K. Schaubel, C. Baxi, G. Campbell, A. M. Gootgeld, A. Langhorn, G. J. Laughon, J. P. Smith, P. M. Anderson, M. M. Menon
{"title":"Design of the advanced divertor pump cryogenic system for DIII-D","authors":"K. Schaubel, C. Baxi, G. Campbell, A. M. Gootgeld, A. Langhorn, G. J. Laughon, J. P. Smith, P. M. Anderson, M. M. Menon","doi":"10.1109/FUSION.1991.218650","DOIUrl":null,"url":null,"abstract":"The design of the cryogenic system for the DIII-D advanced divertor cryocondensation pump is presented. The advanced divertor incorporates a baffle chamber and bias ring located near the bottom of the DIII-D vacuum vessel. A 50000-l/s cryocondensation pump will be installed underneath the baffle for plasma particle exhaust. The pump consists of a liquid-helium-cooled tube operating at 4.3 K and a liquid-nitrogen-cooled radiation shield. Liquid helium is fed by forced flow through the cryopump. Compressed helium gas flowing through the high-pressure side of a heat exchanger is regeneratively cooled by the two-phase helium leaving the pump. The cooled high-pressure gaseous helium is then liquefied by a Joule-Thomson expansion valve. The liquid is returned to a storage dewar. The liquid nitrogen for the radiation shield is supplied by forced flow from a bulk storage system. Control of the cryogenic system is accomplished by a programmable logic controller.<<ETX>>","PeriodicalId":318951,"journal":{"name":"[Proceedings] The 14th IEEE/NPSS Symposium Fusion Engineering","volume":"253 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] The 14th IEEE/NPSS Symposium Fusion Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUSION.1991.218650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The design of the cryogenic system for the DIII-D advanced divertor cryocondensation pump is presented. The advanced divertor incorporates a baffle chamber and bias ring located near the bottom of the DIII-D vacuum vessel. A 50000-l/s cryocondensation pump will be installed underneath the baffle for plasma particle exhaust. The pump consists of a liquid-helium-cooled tube operating at 4.3 K and a liquid-nitrogen-cooled radiation shield. Liquid helium is fed by forced flow through the cryopump. Compressed helium gas flowing through the high-pressure side of a heat exchanger is regeneratively cooled by the two-phase helium leaving the pump. The cooled high-pressure gaseous helium is then liquefied by a Joule-Thomson expansion valve. The liquid is returned to a storage dewar. The liquid nitrogen for the radiation shield is supplied by forced flow from a bulk storage system. Control of the cryogenic system is accomplished by a programmable logic controller.<>