The ARIES-III D-3He tokamak-reactor study

F. Najmabadi, R. Conn, C. Bathke, J. Blanchard, L. Bromberg, J. Brooks, E. Cheng, D. Cohn, D. Ehst, L. El-Guebaly, G. Emmert, T. Dolan, P. Gierszewski, S. Grotz, M.S. Hasan, J. Herring, S. K. Ho, A. Hollies, J. Holmes, E. Ibrahim, S. Jardin, C. Kessel, H. Khater, R. Krakowski, G.L. Kuleinski, J. Mandrekas, T. Mau, G. Miley, R.L. Miller, E. Mogahed, E. Reis, J. Santarius, M. Sawan, J. Schultz, K. Schultz, S. Sharafat, D. Steiner, D. Strickler, I. Sviatoslavsky, D. Sze, P. Titus, M. Valenti, K. Werley, J. H. Whealton, J.E.C. Williams, L. Wittenberg, C. Wong
{"title":"The ARIES-III D-3He tokamak-reactor study","authors":"F. Najmabadi, R. Conn, C. Bathke, J. Blanchard, L. Bromberg, J. Brooks, E. Cheng, D. Cohn, D. Ehst, L. El-Guebaly, G. Emmert, T. Dolan, P. Gierszewski, S. Grotz, M.S. Hasan, J. Herring, S. K. Ho, A. Hollies, J. Holmes, E. Ibrahim, S. Jardin, C. Kessel, H. Khater, R. Krakowski, G.L. Kuleinski, J. Mandrekas, T. Mau, G. Miley, R.L. Miller, E. Mogahed, E. Reis, J. Santarius, M. Sawan, J. Schultz, K. Schultz, S. Sharafat, D. Steiner, D. Strickler, I. Sviatoslavsky, D. Sze, P. Titus, M. Valenti, K. Werley, J. H. Whealton, J.E.C. Williams, L. Wittenberg, C. Wong","doi":"10.1109/FUSION.1991.218914","DOIUrl":null,"url":null,"abstract":"A description of the ARIES-III research effort is presented, and the general features of the ARIES-III reactor are described. The plasma engineering and fusion-power-core design are summarized, including the major results, the key technical issues, and the central conclusions. Analyses have shown that the plasma power-balance window for D-/sup 3/He tokamak reactors is small and requires a first wall (or coating) that is highly reflective to synchrotron radiation and small values of tau /sub ash// epsilon /sub e/ (the ratio of ash-particle to energy confinement times in the core plasma). Both first and second stability regimes of operation have been considered. The second stability regime is chosen for the ARIES-III design point because the reactor can operate at a higher value of tau /sub ash// tau /sub E// tau /sub E/ approximately=2 (twice that of a first stability version), and because it has a reduced plasma current (30 MA), magnetic field at the coil (14 T), mass, and cost (also compared to a first-stability D-/sup 3/He reactor). The major and minor radii are, respectively 7.5 and 2.5 m.<<ETX>>","PeriodicalId":318951,"journal":{"name":"[Proceedings] The 14th IEEE/NPSS Symposium Fusion Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] The 14th IEEE/NPSS Symposium Fusion Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUSION.1991.218914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

A description of the ARIES-III research effort is presented, and the general features of the ARIES-III reactor are described. The plasma engineering and fusion-power-core design are summarized, including the major results, the key technical issues, and the central conclusions. Analyses have shown that the plasma power-balance window for D-/sup 3/He tokamak reactors is small and requires a first wall (or coating) that is highly reflective to synchrotron radiation and small values of tau /sub ash// epsilon /sub e/ (the ratio of ash-particle to energy confinement times in the core plasma). Both first and second stability regimes of operation have been considered. The second stability regime is chosen for the ARIES-III design point because the reactor can operate at a higher value of tau /sub ash// tau /sub E// tau /sub E/ approximately=2 (twice that of a first stability version), and because it has a reduced plasma current (30 MA), magnetic field at the coil (14 T), mass, and cost (also compared to a first-stability D-/sup 3/He reactor). The major and minor radii are, respectively 7.5 and 2.5 m.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
白羊座- iii D-3He托卡马克反应堆研究
介绍了ARIES-III的研究工作,并描述了ARIES-III反应堆的一般特征。综述了等离子体工程和核聚变功率堆设计的主要成果、关键技术问题和中心结论。分析表明,D-/sup 3/He托卡马克反应堆的等离子体功率平衡窗口很小,并且需要对同步辐射具有高反射性的第一壁(或涂层)和较小的tau /sub ash// epsilon /sub e/值(核心等离子体中灰粒子与能量约束时间的比值)。本文考虑了第一和第二种稳定运行机制。选择第二稳定状态作为ares - iii设计点,是因为反应堆可以在更高的tau /sub ash// tau /sub E// tau /sub E/约=2的值下运行(是第一个稳定版本的两倍),并且因为它具有更小的等离子体电流(30 MA),线圈磁场(14 T),质量和成本(也与第一个稳定的D-/sup 3/He反应堆相比)。主要半径为7.5 m,次要半径为2.5 m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of a coil to correct magnetic field errors on the DIII-D tokamak The charge exchange recombination diagnostic system on the DIII-D tokamak Software upgrade for the DIII-D neutral beam control systems Timing system for neutral beam injection on the DIII-D tokamak DIII-D radiation shielding procedures and experiences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1