{"title":"An efficient and practical diagnosis model","authors":"Yue Xu, Chengqi Zhang","doi":"10.1109/TAI.1998.744866","DOIUrl":null,"url":null,"abstract":"The task of diagnosis, a typical abductive problem, as to find a hypothesis that best explains a set of observations. Generally, a neural network diagnostic reasoning model finds only one hypothesis to a set of observations. It is computationally expensive to find the hypothesis because the number of the potential hypotheses is exponentially large. Recently, we have proposed a connectionist diagnosis model to overcome the above difficulty. In this paper, we propose a method to improve the efficiency and the practicality of the model. The improved model can find more solutions, and the efficiency of the model is also improved.","PeriodicalId":424568,"journal":{"name":"Proceedings Tenth IEEE International Conference on Tools with Artificial Intelligence (Cat. No.98CH36294)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Tenth IEEE International Conference on Tools with Artificial Intelligence (Cat. No.98CH36294)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1998.744866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The task of diagnosis, a typical abductive problem, as to find a hypothesis that best explains a set of observations. Generally, a neural network diagnostic reasoning model finds only one hypothesis to a set of observations. It is computationally expensive to find the hypothesis because the number of the potential hypotheses is exponentially large. Recently, we have proposed a connectionist diagnosis model to overcome the above difficulty. In this paper, we propose a method to improve the efficiency and the practicality of the model. The improved model can find more solutions, and the efficiency of the model is also improved.