Scaling of a length scale for regression and prediction

T. Aida
{"title":"Scaling of a length scale for regression and prediction","authors":"T. Aida","doi":"10.1109/NNSP.2002.1030029","DOIUrl":null,"url":null,"abstract":"We analyze the prediction from noised data, based on a regression formulation of the problem. For the regression, we construct a model with a length scale to smooth the data, which is determined by the variance of noise and the speed of the variation of original signals. The model is found to be effective also for prediction. This is because it decreases an uncertain region near a boundary as the speed of the variation of original signals increases, which is a crucial property for accurate prediction.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"312 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze the prediction from noised data, based on a regression formulation of the problem. For the regression, we construct a model with a length scale to smooth the data, which is determined by the variance of noise and the speed of the variation of original signals. The model is found to be effective also for prediction. This is because it decreases an uncertain region near a boundary as the speed of the variation of original signals increases, which is a crucial property for accurate prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于回归和预测的长度尺度的缩放
基于问题的回归公式,我们分析了噪声数据的预测。对于回归,我们构建了一个长度尺度的模型来平滑数据,这是由噪声的方差和原始信号的变化速度决定的。该模型对预测也很有效。这是因为它随着原始信号变化速度的增加而减小边界附近的不确定区域,这是准确预测的关键性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fusion of multiple experts in multimodal biometric personal identity verification systems A new SOLPN-based rate control algorithm for MPEG video coding Analog implementation for networks of integrate-and-fire neurons with adaptive local connectivity Removal of residual crosstalk components in blind source separation using LMS filters Functional connectivity modelling in fMRI based on causal networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1