Machine Learning for Soil Moisture Prediction Using Hyperspectral and Multispectral Data

Michaela Lobato, W. Norris, R. Nagi, A. Soylemezoglu, Dustin Nottage
{"title":"Machine Learning for Soil Moisture Prediction Using Hyperspectral and Multispectral Data","authors":"Michaela Lobato, W. Norris, R. Nagi, A. Soylemezoglu, Dustin Nottage","doi":"10.23919/fusion49465.2021.9627067","DOIUrl":null,"url":null,"abstract":"Soil moisture content is a key component in terrain characterization for site selection and trafficability assessment. It is laborious and time-consuming to determine soil moisture content using traditional in situ soil moisture sensing methods and may be infeasible for large or dangerous sites. By employing remote sensing techniques, soil moisture content can be determined in a safe and efficient manner. In this work, the results of Keller et al. [1] are expanded upon by reducing the dimensionality of a hyperspectral dataset, resulting in an increase in soil moisture content prediction accuracy. Ten models were developed to predict soil moisture – two machine learning models, support vector machine (SVM) and extremely randomized trees (ET), were trained on 5 input variables. The results indicated that soil moisture content could be predicted with greater accuracy by reducing the dimensionality of a hyperspectral dataset to resemble a standard multispectral dataset. The validity of this method is confirmed by creating a multispectral dataset and concatenating it to the reduced dimensionality (RD) set for an accuracy increase. The ET model’s estimates of soil moisture content outperformed the baseline hyperspectral dataset: obtaining an increase of 1.3% and 5.4% in R-squared values (with a corresponding decrease of .13 and .22 in mean absolute error MAE) when trained on RD and concatenated multispectral (CM) datasets, respectively.","PeriodicalId":226850,"journal":{"name":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion49465.2021.9627067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Soil moisture content is a key component in terrain characterization for site selection and trafficability assessment. It is laborious and time-consuming to determine soil moisture content using traditional in situ soil moisture sensing methods and may be infeasible for large or dangerous sites. By employing remote sensing techniques, soil moisture content can be determined in a safe and efficient manner. In this work, the results of Keller et al. [1] are expanded upon by reducing the dimensionality of a hyperspectral dataset, resulting in an increase in soil moisture content prediction accuracy. Ten models were developed to predict soil moisture – two machine learning models, support vector machine (SVM) and extremely randomized trees (ET), were trained on 5 input variables. The results indicated that soil moisture content could be predicted with greater accuracy by reducing the dimensionality of a hyperspectral dataset to resemble a standard multispectral dataset. The validity of this method is confirmed by creating a multispectral dataset and concatenating it to the reduced dimensionality (RD) set for an accuracy increase. The ET model’s estimates of soil moisture content outperformed the baseline hyperspectral dataset: obtaining an increase of 1.3% and 5.4% in R-squared values (with a corresponding decrease of .13 and .22 in mean absolute error MAE) when trained on RD and concatenated multispectral (CM) datasets, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用高光谱和多光谱数据进行土壤水分预测的机器学习
土壤含水量是地形特征的关键组成部分,可用于选址和可通行性评估。采用传统的原位土壤水分传感方法测定土壤水分既费力又费时,而且对于大型或危险场地可能不可行。利用遥感技术,可以安全有效地确定土壤水分含量。在这项工作中,Keller等人[1]的结果通过降低高光谱数据集的维数而得到扩展,从而提高了土壤水分含量的预测精度。开发了10个模型来预测土壤湿度-两个机器学习模型,支持向量机(SVM)和极度随机树(ET),在5个输入变量上进行训练。结果表明,通过降低高光谱数据的维数使其与标准的多光谱数据集相似,可以提高土壤水分含量的预测精度。通过创建一个多光谱数据集并将其与降维(RD)集连接以提高精度,验证了该方法的有效性。ET模型对土壤水分含量的估计优于基线高光谱数据集:在RD和串联多光谱(CM)数据集上训练时,r平方值分别增加了1.3%和5.4%(平均绝对误差MAE相应减少了0.13和0.22)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Georegistration Accuracy on Wide Area Motion Imagery Object Detection and Tracking Posterior Cramér-Rao Bounds for Tracking Intermittently Visible Targets in Clutter Monocular 3D Multi-Object Tracking with an EKF Approach for Long-Term Stable Tracks Resilient Collaborative All-source Navigation Symmetric Star-convex Shape Tracking With Wishart Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1