Autonomous registration of disparate spatial data via an evolutionary algorithm toolbox

K. Tan, K. Sengupta, Tong-heng Lee, Ramasubramanian Sathikannan
{"title":"Autonomous registration of disparate spatial data via an evolutionary algorithm toolbox","authors":"K. Tan, K. Sengupta, Tong-heng Lee, Ramasubramanian Sathikannan","doi":"10.1109/CEC.2002.1006205","DOIUrl":null,"url":null,"abstract":"In this paper, we present the registration of disparate spatial data. To be specific, we consider the registration of digital terrain elevation data (DTED) to National High Altitude Photography (NHAP). Initially, the DTED is shaded to form a synthetic image, and our registration process maps point in the shaded image to points in the NHAP. For the purpose of comparison, we propose two distinct techniques for matching. The first method is a semi-autonomous. It requires two pairs of user defined matched points to estimate an initial transform as starting point in the search for the best fitting transform using Nelder-Mead Simplex Method. The second method, being more novel in nature, attempts to eliminate the need for any user intervention and registers the two data autonomously by employing the Multi Objective Evolutionary Algorithm (MOEA) toolbox. Both methods worked well in estimating the best fitting affine transform to register the image and elevation data, and the MOEA based autonomous technique outperforms the much simpler single objective based semi autonomous technique.","PeriodicalId":184547,"journal":{"name":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2002.1006205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present the registration of disparate spatial data. To be specific, we consider the registration of digital terrain elevation data (DTED) to National High Altitude Photography (NHAP). Initially, the DTED is shaded to form a synthetic image, and our registration process maps point in the shaded image to points in the NHAP. For the purpose of comparison, we propose two distinct techniques for matching. The first method is a semi-autonomous. It requires two pairs of user defined matched points to estimate an initial transform as starting point in the search for the best fitting transform using Nelder-Mead Simplex Method. The second method, being more novel in nature, attempts to eliminate the need for any user intervention and registers the two data autonomously by employing the Multi Objective Evolutionary Algorithm (MOEA) toolbox. Both methods worked well in estimating the best fitting affine transform to register the image and elevation data, and the MOEA based autonomous technique outperforms the much simpler single objective based semi autonomous technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过进化算法工具箱对不同空间数据进行自主注册
在本文中,我们提出了不同空间数据的配准。具体来说,我们考虑将数字地形高程数据(DTED)配准到国家高空摄影(NHAP)。最初,对DTED进行阴影处理以形成合成图像,我们的配准过程将阴影图像中的点映射到NHAP中的点。为了比较,我们提出了两种不同的匹配技术。第一种方法是半自治的。在使用Nelder-Mead单纯形法寻找最佳拟合变换时,需要两对用户定义的匹配点来估计一个初始变换作为起点。第二种方法本质上更新颖,它试图消除任何用户干预的需要,并通过使用多目标进化算法(MOEA)工具箱自主注册两个数据。两种方法都能很好地估计拟合仿射变换以配准图像和高程数据,并且基于MOEA的自主技术优于更简单的基于单目标的半自主技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of FPGA based adaptive image enhancement filter system using genetic algorithms Intelligent predictive control of a power plant with evolutionary programming optimizer and neuro-fuzzy identifier Blocked stochastic sampling versus Estimation of Distribution Algorithms Distinguishing adaptive from non-adaptive evolution using Ashby's law of requisite variety An artificial immune network for multimodal function optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1