AdvDoor: adversarial backdoor attack of deep learning system

Quan Zhang, Yifeng Ding, Yongqiang Tian, Jianmin Guo, Min Yuan, Yu Jiang
{"title":"AdvDoor: adversarial backdoor attack of deep learning system","authors":"Quan Zhang, Yifeng Ding, Yongqiang Tian, Jianmin Guo, Min Yuan, Yu Jiang","doi":"10.1145/3460319.3464809","DOIUrl":null,"url":null,"abstract":"Deep Learning (DL) system has been widely used in many critical applications, such as autonomous vehicles and unmanned aerial vehicles. However, their security is threatened by backdoor attack, which is achieved by adding artificial patterns on specific training data. Existing attack methods normally poison the data using a patch, and they can be easily detected by existing detection methods. In this work, we propose the Adversarial Backdoor, which utilizes the Targeted Universal Adversarial Perturbation (TUAP) to hide the anomalies in DL models and confuse existing powerful detection methods. With extensive experiments, it is demonstrated that Adversarial Backdoor can be injected stably with an attack success rate around 98%. Moreover, Adversarial Backdoor can bypass state-of-the-art backdoor detection methods. More specifically, only around 37% of the poisoned models can be caught, and less than 29% of the poisoned data cannot bypass the detection. In contrast, for the patch backdoor, all the poisoned models and more than 80% of the poisoned data will be detected. This work intends to alarm the researchers and developers of this potential threat and to inspire the designing of effective detection methods.","PeriodicalId":188008,"journal":{"name":"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460319.3464809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Deep Learning (DL) system has been widely used in many critical applications, such as autonomous vehicles and unmanned aerial vehicles. However, their security is threatened by backdoor attack, which is achieved by adding artificial patterns on specific training data. Existing attack methods normally poison the data using a patch, and they can be easily detected by existing detection methods. In this work, we propose the Adversarial Backdoor, which utilizes the Targeted Universal Adversarial Perturbation (TUAP) to hide the anomalies in DL models and confuse existing powerful detection methods. With extensive experiments, it is demonstrated that Adversarial Backdoor can be injected stably with an attack success rate around 98%. Moreover, Adversarial Backdoor can bypass state-of-the-art backdoor detection methods. More specifically, only around 37% of the poisoned models can be caught, and less than 29% of the poisoned data cannot bypass the detection. In contrast, for the patch backdoor, all the poisoned models and more than 80% of the poisoned data will be detected. This work intends to alarm the researchers and developers of this potential threat and to inspire the designing of effective detection methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AdvDoor:深度学习系统的对抗性后门攻击
深度学习(Deep Learning, DL)系统已广泛应用于自动驾驶汽车和无人机等关键领域。然而,它们的安全性受到后门攻击的威胁,后门攻击是通过在特定的训练数据上添加人工模式来实现的。现有的攻击方法通常使用补丁来毒害数据,并且很容易被现有的检测方法检测到。在这项工作中,我们提出了对抗性后门,它利用目标通用对抗性摄动(TUAP)来隐藏深度学习模型中的异常,并混淆现有的强大检测方法。通过大量的实验证明,对抗性后门可以稳定注入,攻击成功率在98%左右。此外,对抗性后门可以绕过最先进的后门检测方法。更具体地说,只有大约37%的中毒模型可以被捕获,不到29%的中毒数据不能绕过检测。相比之下,对于补丁后门,所有的中毒车型和80%以上的中毒数据都会被检测出来。这项工作旨在提醒研究人员和开发人员注意这一潜在威胁,并启发设计有效的检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semantic table structure identification in spreadsheets Parema: an unpacking framework for demystifying VM-based Android packers TERA: optimizing stochastic regression tests in machine learning projects Empirically evaluating readily available information for regression test optimization in continuous integration RESTest: automated black-box testing of RESTful web APIs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1