Axial Capacity of Circular Concrete Columns Reinforced with GFRP Bars and Spirals using FEA

Yousef Awera, F. Abed
{"title":"Axial Capacity of Circular Concrete Columns Reinforced with GFRP Bars and Spirals using FEA","authors":"Yousef Awera, F. Abed","doi":"10.1109/ASET48392.2020.9118240","DOIUrl":null,"url":null,"abstract":"This paper presents a numerical study of axial behavior of circular concrete columns reinforced with Glass Fiber Reinforced Polymer (GFRP) bars and spirals. A nonlinear finite element (FE) model was developed using ABAQUS to predict the compressive behavior of the concentrically loaded columns. Initially, the FE model was verified using an existing experimental paper which investigate the axial capacity of circular concrete columns reinforced with GFRP bars and spirals. The concrete used in the experiment had a compressive strength of 41.9 MPa. Parametric study aiming at evaluating the effect of varying the longitudinal and transverse GFRP reinforcement ratios in the columns was carried out. The results indicated that both the ductility and peak load increase when the reinforcement ratio increases. For spirals, when the diameter increases or the pith decreases, the ductility and capacity increase but with keeping a pitch that allows confinement in the case of changing the spiral diameter.","PeriodicalId":237887,"journal":{"name":"2020 Advances in Science and Engineering Technology International Conferences (ASET)","volume":"317 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Advances in Science and Engineering Technology International Conferences (ASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASET48392.2020.9118240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a numerical study of axial behavior of circular concrete columns reinforced with Glass Fiber Reinforced Polymer (GFRP) bars and spirals. A nonlinear finite element (FE) model was developed using ABAQUS to predict the compressive behavior of the concentrically loaded columns. Initially, the FE model was verified using an existing experimental paper which investigate the axial capacity of circular concrete columns reinforced with GFRP bars and spirals. The concrete used in the experiment had a compressive strength of 41.9 MPa. Parametric study aiming at evaluating the effect of varying the longitudinal and transverse GFRP reinforcement ratios in the columns was carried out. The results indicated that both the ductility and peak load increase when the reinforcement ratio increases. For spirals, when the diameter increases or the pith decreases, the ductility and capacity increase but with keeping a pitch that allows confinement in the case of changing the spiral diameter.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GFRP筋加螺旋钢筋混凝土圆柱轴向承载力有限元分析
本文对玻璃纤维增强聚合物(GFRP)钢筋和螺旋钢筋的圆形混凝土柱的轴向性能进行了数值研究。利用ABAQUS软件建立了非线性有限元模型,对同心受压柱的抗压性能进行了预测。首先,利用现有的实验论文验证了有限元模型,该实验论文研究了GFRP筋和螺旋筋加固的圆形混凝土柱的轴向承载力。试验所用混凝土抗压强度为41.9 MPa。对不同GFRP纵向和横向配筋率对柱的影响进行了参数化研究。结果表明,随着配筋率的增大,混凝土的延性和峰值荷载均增大。对于螺旋,当直径增加或髓减少时,延性和容量增加,但在改变螺旋直径的情况下保持一定的节距,允许限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fabrication of acoustic microfluidic platforms for particle manipulation Transient Analysis of DC Shunt Motor Supplied by Stand-alone PV System Employing FOCV for MPPT Verifying the Underutilizationof Geographic Information Systems (GIS) in the Realm of Landscape Architecture and Planning Investigation of Fall Hazards from Ablution Floors of Mosques in the UAE: Assessments of Traction and Texture Features and Their Effects on Slipperiness Emergence and Growth of Mobile Money in Modern India: A Study on the Effect of Mobile Money
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1