From dataflow analysis basics to the programming of ASICs

M. Bekooij
{"title":"From dataflow analysis basics to the programming of ASICs","authors":"M. Bekooij","doi":"10.1145/2906363.2930673","DOIUrl":null,"url":null,"abstract":"Programming stream processing multiprocessor systems is a challenging task especially if there are real-time requirements. Therefore it is desirable to use formal models and real-time analysis techniques. However the classical periodic task-model does not match well with stream processing applications which results in suboptimal designs. In this talk we show that data-driven execution of stream processing application improves the robustness against faulty workload assumptions. Using the earlier-the-better-refinement theory practically useful deterministic timed-dataflow analysis models can be created of these applications. Strong analytical properties are obtained by reservation of resources in the multiprocessor systems. Compilation tools can hide the modelling effort for the programmers of the multiprocessor systems. Future cyber-physical systems can benefit from the higher level of non-determinism that is supported by the presented timed-dataflow analysis techniques.","PeriodicalId":344390,"journal":{"name":"Proceedings of the 19th International Workshop on Software and Compilers for Embedded Systems","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Workshop on Software and Compilers for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2906363.2930673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Programming stream processing multiprocessor systems is a challenging task especially if there are real-time requirements. Therefore it is desirable to use formal models and real-time analysis techniques. However the classical periodic task-model does not match well with stream processing applications which results in suboptimal designs. In this talk we show that data-driven execution of stream processing application improves the robustness against faulty workload assumptions. Using the earlier-the-better-refinement theory practically useful deterministic timed-dataflow analysis models can be created of these applications. Strong analytical properties are obtained by reservation of resources in the multiprocessor systems. Compilation tools can hide the modelling effort for the programmers of the multiprocessor systems. Future cyber-physical systems can benefit from the higher level of non-determinism that is supported by the presented timed-dataflow analysis techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从数据流分析基础到asic的编程
编程流处理多处理器系统是一项具有挑战性的任务,特别是在有实时要求的情况下。因此,使用正式模型和实时分析技术是可取的。然而,传统的周期任务模型不能很好地与流处理应用相匹配,从而导致了次优设计。在这次演讲中,我们展示了数据驱动的流处理应用程序的执行提高了对错误工作负载假设的鲁棒性。使用越早细化越好的理论,可以为这些应用程序创建实用的确定性时间数据流分析模型。在多处理机系统中,通过预留资源获得了较强的解析性质。编译工具可以为多处理器系统的程序员隐藏建模工作。未来的信息物理系统可以从时序数据流分析技术所支持的更高级别的非确定性中受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Design Framework for Mapping Vectorized Synchronous Dataflow Graphs onto CPU-GPU Platforms Exploiting Configuration Dependencies for Rapid Area-efficient Customization of Soft-core Processors CSDFa: A Model for Exploiting the Trade-Off between Data and Pipeline Parallelism Cache-Aware Instruction SPM Allocation for Hard Real-Time Systems Exploring Single Source Shortest Path Parallelization on Shared Memory Accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1