A load-rebalance PSO heuristic for task matching in heterogeneous computing systems

Manitpal S. Sidhu, P. Thulasiraman, R. Thulasiram
{"title":"A load-rebalance PSO heuristic for task matching in heterogeneous computing systems","authors":"Manitpal S. Sidhu, P. Thulasiraman, R. Thulasiram","doi":"10.1109/SIS.2013.6615176","DOIUrl":null,"url":null,"abstract":"The idea of utilizing nature inspired algorithms to find optimal solutions to various real world NP complete optimization problems has been extensively explored by researchers. One such problem is task matching problem in heterogeneous distributed computing environments like Grid and Cloud. Researchers have explored Swarm Intelligence algorithm, Particle Swarm Optimization (PSO), to find optimal solution for task matching problem. In this study, we investigate the effectiveness of smallest position value (SPV) technique in mapping continuous version of PSO algorithm to the task matching problem in a heterogeneous computing environment. We show that the task matching generated by this technique will result in in-efficient resource utilization. Thus, we present a novel load rebalance based particle swarm optimization heuristic (PSO-LR) for efficient load distribution among available compute nodes even in heterogeneous computing environments.","PeriodicalId":444765,"journal":{"name":"2013 IEEE Symposium on Swarm Intelligence (SIS)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Swarm Intelligence (SIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIS.2013.6615176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

The idea of utilizing nature inspired algorithms to find optimal solutions to various real world NP complete optimization problems has been extensively explored by researchers. One such problem is task matching problem in heterogeneous distributed computing environments like Grid and Cloud. Researchers have explored Swarm Intelligence algorithm, Particle Swarm Optimization (PSO), to find optimal solution for task matching problem. In this study, we investigate the effectiveness of smallest position value (SPV) technique in mapping continuous version of PSO algorithm to the task matching problem in a heterogeneous computing environment. We show that the task matching generated by this technique will result in in-efficient resource utilization. Thus, we present a novel load rebalance based particle swarm optimization heuristic (PSO-LR) for efficient load distribution among available compute nodes even in heterogeneous computing environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异构计算系统任务匹配的负载再平衡粒子群启发式算法
利用自然启发的算法来寻找各种现实世界NP完全优化问题的最优解的想法已经被研究人员广泛探索。其中一个问题就是网格和云等异构分布式计算环境中的任务匹配问题。研究人员探索了群体智能算法——粒子群优化算法(PSO)来寻找任务匹配问题的最优解。在本研究中,我们研究了最小位置值(SPV)技术在将PSO算法的连续版本映射到异构计算环境中的任务匹配问题中的有效性。我们表明,由该技术生成的任务匹配将导致低效的资源利用。因此,我们提出了一种新的基于负载再平衡的粒子群优化启发式算法(PSO-LR),以便在异构计算环境中有效地在可用计算节点之间分配负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of stagnation behavior of vector evaluated particle swarm optimization Reinforcement learning in swarm-robotics for multi-agent foraging-task domain A novel ACO algorithm for dynamic binary chains based on changes in the system's stability Cooperative particle swarm optimization in dynamic environments Joint energy and spinning reserve dispatch in wind-thermal power system using IDE-SAR technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1