Identification of Non-linear Dynamic System

V. Shopov, V. Markova
{"title":"Identification of Non-linear Dynamic System","authors":"V. Shopov, V. Markova","doi":"10.1109/InfoTech.2019.8860871","DOIUrl":null,"url":null,"abstract":"The behaviour of non-linear dynamic systems is studied. In this paper, the authors investigate the modelling and prediction abilities of a Recurrent Neural Network, Long Short Term Memory and Gated Recurrent Unit networks. The the input data sets has a chaotic nature. The effectiveness of all networks in modelling the several chaotic attractors is studied. And a comparison of their prediction quality is made.","PeriodicalId":179336,"journal":{"name":"2019 International Conference on Information Technologies (InfoTech)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Information Technologies (InfoTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InfoTech.2019.8860871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The behaviour of non-linear dynamic systems is studied. In this paper, the authors investigate the modelling and prediction abilities of a Recurrent Neural Network, Long Short Term Memory and Gated Recurrent Unit networks. The the input data sets has a chaotic nature. The effectiveness of all networks in modelling the several chaotic attractors is studied. And a comparison of their prediction quality is made.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性动态系统辨识
研究了非线性动力系统的行为。在本文中,作者研究了递归神经网络、长短期记忆和门控递归单元网络的建模和预测能力。输入数据集具有混沌性。研究了所有网络对几种混沌吸引子建模的有效性。并对它们的预测质量进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hierarchical Machine Learning for IoT Anomaly Detection in SDN Mathematical Modelling of Electronic Circuits with Index Matrices How to Transform Real Time Traffic Information into a Historical Database Used for Dynamic Routing Managing Uncertainty in Ontology Mapping in E-Learning Context Sentiment Detection from ASR Output
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1