Labor Demand Forecasting: The Case of Cambodia

KY Sereyvuth
{"title":"Labor Demand Forecasting: The Case of Cambodia","authors":"KY Sereyvuth","doi":"10.47260/bae/1025","DOIUrl":null,"url":null,"abstract":"Abstract\n\nLabor demand forecasting is crucial for Cambodia’s economic prosperity. This is because it enables the country to make well-informed decisions and implement effective policies that align with the changing dynamics of its labor market to promote sustainable economic progress. This study utilizes a demand-driven model; specifically, the autoregressive integrated moving average (ARIMA) model with a top-down approach to forecast Cambodia’s labor demand from 2020 to 2025. By capturing current and future labor market trends, we can identify skill requirements and ensure high employment rates for sustainable development. With labor demand forecasting, Cambodia can proactively address skill gaps, optimize workforce planning, and foster an environment conducive to economic growth and stability.\n\nJEL classification: C82, J21, J23.\nKeywords: Labor demand, Employment forecasting, ARIMA, Top-down forecasting.","PeriodicalId":344946,"journal":{"name":"Bulletin of Applied Economics","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Applied Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47260/bae/1025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Labor demand forecasting is crucial for Cambodia’s economic prosperity. This is because it enables the country to make well-informed decisions and implement effective policies that align with the changing dynamics of its labor market to promote sustainable economic progress. This study utilizes a demand-driven model; specifically, the autoregressive integrated moving average (ARIMA) model with a top-down approach to forecast Cambodia’s labor demand from 2020 to 2025. By capturing current and future labor market trends, we can identify skill requirements and ensure high employment rates for sustainable development. With labor demand forecasting, Cambodia can proactively address skill gaps, optimize workforce planning, and foster an environment conducive to economic growth and stability. JEL classification: C82, J21, J23. Keywords: Labor demand, Employment forecasting, ARIMA, Top-down forecasting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
劳动力需求预测:以柬埔寨为例
【摘要】劳动力需求预测对柬埔寨经济的繁荣至关重要。这是因为它使国家能够做出明智的决策并实施有效的政策,以配合其劳动力市场不断变化的动态,从而促进可持续的经济发展。本研究采用需求驱动模型;具体而言,采用自回归综合移动平均(ARIMA)模型,采用自上而下的方法预测柬埔寨2020年至2025年的劳动力需求。通过把握当前和未来的劳动力市场趋势,我们可以确定技能需求,确保高就业率,促进可持续发展。通过劳动力需求预测,柬埔寨可以积极解决技能差距问题,优化劳动力规划,营造有利于经济增长和稳定的环境。JEL分类:C82、J21、J23。关键词:劳动力需求,就业预测,ARIMA,自上而下预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Do Directors’ Remuneration and Remuneration Committees of the Board affect Bank’s Performance: Application of GMM model? Is There J-Curve Effect in the Services Trade in Canada? A Panel Data Analysis Effects of Expansionary Fiscal Policy in a Commodity-Exporting Economy: Evidence from Mongolia The impact of corporate governance mechanisms on earnings quality during the COVID-19 Pandemic. Evidence from the UK Asymmetric Effects of Exchange Rate Volatility on Taiwan-China Trade: A Non-Linear ARDL Analysis of 20 Industries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1