Automatic Pattern Classification of Real Metallographic Images

V. Zeljkovic, P. Praks, R. Vincelette, C. Tameze, L. Válek
{"title":"Automatic Pattern Classification of Real Metallographic Images","authors":"V. Zeljkovic, P. Praks, R. Vincelette, C. Tameze, L. Válek","doi":"10.1109/IAS.2009.5324864","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of automatic pattern classification in real metallographic images from the steel plant ArcelorMittal Ostrava plc (Ostrava, Czech Republic). Images of manufactured metal plates contain dark dots, i.e. imperfections. We monitor the process quality in the steel plant by determining automatically the number and sizes of these dots which represent plates' imperfections. The proposed algorithm segments the area of plates that contains dots, identifies rows of pixels that contain them, marks and counts them. The obtained results are promising and confirm that the proposed algorithm should serve as the foundation for future research in this area.","PeriodicalId":178685,"journal":{"name":"2009 IEEE Industry Applications Society Annual Meeting","volume":"81 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2009.5324864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper addresses the problem of automatic pattern classification in real metallographic images from the steel plant ArcelorMittal Ostrava plc (Ostrava, Czech Republic). Images of manufactured metal plates contain dark dots, i.e. imperfections. We monitor the process quality in the steel plant by determining automatically the number and sizes of these dots which represent plates' imperfections. The proposed algorithm segments the area of plates that contains dots, identifies rows of pixels that contain them, marks and counts them. The obtained results are promising and confirm that the proposed algorithm should serve as the foundation for future research in this area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
真实金相图像的自动模式分类
本文研究了ArcelorMittal Ostrava plc (Ostrava, Czech Republic)钢厂真实金相图像的自动模式分类问题。人造金属板的图像包含黑点,即缺陷。我们通过自动确定这些代表钢板缺陷的点的数量和大小来监控钢厂的工艺质量。该算法对包含点的平板区域进行分割,识别包含点的像素行,对其进行标记和计数。得到的结果是有希望的,并证实了该算法可以作为该领域未来研究的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contribution to Determination of Domain of Attraction in Power Systems: Application to Drives with Input Filter Modified Synchronous Reference Frame Strategy for Selective-Tuned Single Phase Hybrid Active Power Filter Electrical and Thermal Analysis of Parallel Single-Conductor Cable Installations Nozzleless EHD Spraying for Fine Droplet Production in Liquid-In-Liquid System Universal Input Voltage Self-Oscillating Electronic Ballast with Feedforward Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1