Covariance estimation for multidimensional data using the EM algorithm

T. A. Barton, D. Fuhrmann
{"title":"Covariance estimation for multidimensional data using the EM algorithm","authors":"T. A. Barton, D. Fuhrmann","doi":"10.1109/ACSSC.1993.342500","DOIUrl":null,"url":null,"abstract":"Under a complex-Gaussian data model, a maximum likelihood method based on the iterative expectation-maximization algorithm is given to estimate structured covariance matrices for multidimensional data organized into column-vector form. The covariance structures of interest involve a hierarchy of subblocks within the covariance matrix, and include block-circulant and block Toeplitz matrices and their generalizations. These covariance matrices are elements of certain covariance constraint sets such that each element may be described as a matrix multiplication of a known matrix of Kronecker products and a nonnegative-definite, block-diagonal matrix. Several convergence properties of the estimation procedure are discussed, and an example of algorithm behavior is provided.<<ETX>>","PeriodicalId":266447,"journal":{"name":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","volume":"241 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1993.342500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Under a complex-Gaussian data model, a maximum likelihood method based on the iterative expectation-maximization algorithm is given to estimate structured covariance matrices for multidimensional data organized into column-vector form. The covariance structures of interest involve a hierarchy of subblocks within the covariance matrix, and include block-circulant and block Toeplitz matrices and their generalizations. These covariance matrices are elements of certain covariance constraint sets such that each element may be described as a matrix multiplication of a known matrix of Kronecker products and a nonnegative-definite, block-diagonal matrix. Several convergence properties of the estimation procedure are discussed, and an example of algorithm behavior is provided.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于EM算法的多维数据协方差估计
在复高斯数据模型下,给出了一种基于迭代期望最大化算法的极大似然方法,用于估计列向量形式多维数据的结构化协方差矩阵。感兴趣的协方差结构涉及协方差矩阵中的子块层次结构,包括块循环矩阵和块Toeplitz矩阵及其推广。这些协方差矩阵是某些协方差约束集合的元素,使得每个元素可以被描述为已知的克罗内克积矩阵和非负定的块对角矩阵的矩阵乘法。讨论了估计过程的几个收敛性,并给出了算法行为的一个例子
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimating error diffusion kernel from error diffused images Optical-to-SAR image registration using the active contour model Efficient organization of large ship radar databases using wavelets and structured vector quantization Signal processing using the generalized Taylor series expansion Evaluation of a model based data fusion algorithm with multi-mode OTHR data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1