A Novel Approach to Noise Reduction and Real-Time Enhancement of Speech Synthesis

M. Saadeq, Rafieee, A. Khazaei
{"title":"A Novel Approach to Noise Reduction and Real-Time Enhancement of Speech Synthesis","authors":"M. Saadeq, Rafieee, A. Khazaei","doi":"10.1109/CICSyN.2010.41","DOIUrl":null,"url":null,"abstract":"This paper is proposed for an explicit synthetic speech on LPC speech synthesis by discovering a novel parameter for speech enhancement. We present the NSSA(Natural Synthetic Speech Approach) to converge the same input utterances by different speakers to a new common parameter. The analysis of phonemes is beingused in order to make a much more natural and clear synthesize with minimum noise. In this paper, we enhanced the real time speech synthesis with a novel approachfor advance noise reduction and high fidelity of the synthesizer system. According to this approach, many conventional applications such as text-to-speech synthesiscan be used more efficiently. Therefore we implement the Linear Predictive Coding with Levinson-Durbin algorithm for synthesizer via TMS320C6713 DSK with RTDXmodule for testing and optimizing the results to create the best enjoyable synthetic voice.","PeriodicalId":358023,"journal":{"name":"2010 2nd International Conference on Computational Intelligence, Communication Systems and Networks","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Computational Intelligence, Communication Systems and Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICSyN.2010.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper is proposed for an explicit synthetic speech on LPC speech synthesis by discovering a novel parameter for speech enhancement. We present the NSSA(Natural Synthetic Speech Approach) to converge the same input utterances by different speakers to a new common parameter. The analysis of phonemes is beingused in order to make a much more natural and clear synthesize with minimum noise. In this paper, we enhanced the real time speech synthesis with a novel approachfor advance noise reduction and high fidelity of the synthesizer system. According to this approach, many conventional applications such as text-to-speech synthesiscan be used more efficiently. Therefore we implement the Linear Predictive Coding with Levinson-Durbin algorithm for synthesizer via TMS320C6713 DSK with RTDXmodule for testing and optimizing the results to create the best enjoyable synthetic voice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的语音合成降噪和实时性增强方法
本文通过发现一种新的语音增强参数,提出了一种基于LPC语音合成的显式合成语音。我们提出了NSSA(自然合成语音方法),将不同说话者的相同输入语音收敛到一个新的公共参数。使用音素分析是为了使合成更加自然和清晰,噪音最小。在本文中,我们通过一种新颖的方法来增强实时语音合成,从而提高合成器系统的降噪和高保真度。根据这种方法,许多传统的应用,如文本到语音的合成可以更有效地使用。因此,我们通过TMS320C6713 DSK与RTDXmodule实现了Levinson-Durbin算法的线性预测编码,用于合成器测试和优化结果,以创造最佳的令人愉快的合成声音。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic Algorithm-Artificial Neural Network (GA-ANN) Hybrid Intelligence for Cancer Diagnosis EEG Analysis for Brainwave Balancing Index (BBI) Expert-Aware Approach: A New Approach to Improve Network Security Visualization Tool Micro SOA Model for Managing and Integrating Wireless Sensor Network into IP-Based Networks Context-Aware News Recommender in Mobile Hybrid P2P Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1