{"title":"B-Spline Texture Coefficients Estimator for Screen Content Image Super-Resolution","authors":"B. Pak, Jae-Won Lee, K. Jin","doi":"10.1109/CVPR52729.2023.00970","DOIUrl":null,"url":null,"abstract":"Screen content images (SCIs) include many informative components, e.g., texts and graphics. Such content creates sharp edges or homogeneous areas, making a pixel distribution of SCI different from the natural image. Therefore, we need to properly handle the edges and textures to minimize information distortion of the contents when a display device's resolution differs from SCIs. To achieve this goal, we propose an implicit neural representation using B-splines for screen content image super-resolution (SCI SR) with arbitrary scales. Our method extracts scaling, translating, and smoothing parameters of B-splines. The followed multilayer perceptron (MLP) uses the estimated B-splines to recover high-resolution SCI. Our network outperforms both a transformer-based reconstruction and an implicit Fourier representation method in almost upscaling factor, thanks to the positive constraint and compact support of the B-spline basis. Moreover, our SR results are recognized as correct text letters with the highest confidence by a pre-trained scene text recognition network. Source code is available at https://github.com/ByeongHyunPak/btc.","PeriodicalId":376416,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52729.2023.00970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Screen content images (SCIs) include many informative components, e.g., texts and graphics. Such content creates sharp edges or homogeneous areas, making a pixel distribution of SCI different from the natural image. Therefore, we need to properly handle the edges and textures to minimize information distortion of the contents when a display device's resolution differs from SCIs. To achieve this goal, we propose an implicit neural representation using B-splines for screen content image super-resolution (SCI SR) with arbitrary scales. Our method extracts scaling, translating, and smoothing parameters of B-splines. The followed multilayer perceptron (MLP) uses the estimated B-splines to recover high-resolution SCI. Our network outperforms both a transformer-based reconstruction and an implicit Fourier representation method in almost upscaling factor, thanks to the positive constraint and compact support of the B-spline basis. Moreover, our SR results are recognized as correct text letters with the highest confidence by a pre-trained scene text recognition network. Source code is available at https://github.com/ByeongHyunPak/btc.