Rate control using conditional mean estimator

H. Kim, Hyung-Suk Kim, T. Acharya
{"title":"Rate control using conditional mean estimator","authors":"H. Kim, Hyung-Suk Kim, T. Acharya","doi":"10.1109/DCC.2002.1000001","DOIUrl":null,"url":null,"abstract":"Summary form only given. This paper presents a simple, fast and accurate rate control algorithm using conditional mean estimator (nonlinear regression) that plays a central role in estimation theory. Central to nonlinear estimation and stochastic control problems is the determination of the probability density function of the state conditioned on the available data. If this a posteriori density function is known, then an estimate of the state for any performance can be determined. The proposed algorithm measures this conditional mean by estimating a joint probability density function (PDF) using Parzen's window by extending it to multivariate case. We use this window function to estimate a joint PDF using long training data. The training data pick up the joint PDF between the quantization parameter (QP) and the bits spent for each macroblock depending on the sum of absolute differences (SAD) value from motion estimation. Since the SAD information is obtained as by-product of motion estimation, the additional complexity is minimal. We increase the accuracy of this joint PDF by clustering the training data depending on the QP values within admissible ranges. This localization helps understand image characteristics more accurately. Then we apply the adaptive vector quantization to simplify the conditional mean estimation of the rate given the SAD and QP values. This information is stored into three look-up tables for I, P and B pictures. They contain the localized R-D function on macroblock basis. We use these tables to find the optimal QP values in least-mean-square (LMS) sense for a given bit budget of the current frame. We compared our proposed algorithm with the MPEG-4-rate control algorithm (Q2). Simulation results show that the proposed algorithm outperforms the informative MPEG-4 rate control algorithm in terms of reproduced image quality and coding efficiency while requiring much less implementation complexity.","PeriodicalId":420897,"journal":{"name":"Proceedings DCC 2002. Data Compression Conference","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC 2002. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2002.1000001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary form only given. This paper presents a simple, fast and accurate rate control algorithm using conditional mean estimator (nonlinear regression) that plays a central role in estimation theory. Central to nonlinear estimation and stochastic control problems is the determination of the probability density function of the state conditioned on the available data. If this a posteriori density function is known, then an estimate of the state for any performance can be determined. The proposed algorithm measures this conditional mean by estimating a joint probability density function (PDF) using Parzen's window by extending it to multivariate case. We use this window function to estimate a joint PDF using long training data. The training data pick up the joint PDF between the quantization parameter (QP) and the bits spent for each macroblock depending on the sum of absolute differences (SAD) value from motion estimation. Since the SAD information is obtained as by-product of motion estimation, the additional complexity is minimal. We increase the accuracy of this joint PDF by clustering the training data depending on the QP values within admissible ranges. This localization helps understand image characteristics more accurately. Then we apply the adaptive vector quantization to simplify the conditional mean estimation of the rate given the SAD and QP values. This information is stored into three look-up tables for I, P and B pictures. They contain the localized R-D function on macroblock basis. We use these tables to find the optimal QP values in least-mean-square (LMS) sense for a given bit budget of the current frame. We compared our proposed algorithm with the MPEG-4-rate control algorithm (Q2). Simulation results show that the proposed algorithm outperforms the informative MPEG-4 rate control algorithm in terms of reproduced image quality and coding efficiency while requiring much less implementation complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用条件均值估计器的速率控制
只提供摘要形式。本文提出了一种简单、快速、准确的基于条件均值估计量(非线性回归)的速率控制算法,它在估计理论中起着核心作用。非线性估计和随机控制问题的核心是确定以可用数据为条件的状态的概率密度函数。如果这个后验密度函数是已知的,那么就可以确定任何性能的状态估计。该算法利用Parzen窗口对联合概率密度函数(PDF)进行估计,并将其扩展到多变量情况。我们使用这个窗口函数来估计使用长训练数据的联合PDF。训练数据根据运动估计的绝对差值之和提取量化参数(QP)和每个宏块花费的比特之间的联合PDF。由于SAD信息是作为运动估计的副产品获得的,因此额外的复杂性是最小的。我们通过在允许范围内的QP值对训练数据进行聚类来提高该联合PDF的准确性。这种定位有助于更准确地理解图像特征。然后应用自适应矢量量化简化给定SAD和QP值的速率条件均值估计。该信息存储在I、P和B图片的三个查询表中。它们包含了基于宏块的本地化R-D函数。我们使用这些表来查找当前帧的给定比特预算的最小均方(LMS)意义上的最佳QP值。我们将提出的算法与mpeg -4速率控制算法(Q2)进行了比较。仿真结果表明,该算法在再现图像质量和编码效率方面优于信息型MPEG-4速率控制算法,且实现复杂度大大降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduced complexity quantization under classification constraints Less redundant codes for variable size dictionaries Compression techniques for active video content LZAC lossless data compression Data compression of correlated non-binary sources using punctured turbo codes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1