Differential Evolution with Neighborhood Search

Yuzhen Liu, Shoufu Li
{"title":"Differential Evolution with Neighborhood Search","authors":"Yuzhen Liu, Shoufu Li","doi":"10.1109/CINC.2010.5643890","DOIUrl":null,"url":null,"abstract":"In order to improve the ability of neighborhood search of differential evolutionary (DE) algorithm, we propose a new variant of DE with linear neighborhood search, called LiNDE, for global optimization problems (GOPs). LiNDE employs a linear combination of triple vectors taken randomly from evolutionary population. The main characteristics of LiNDE are less parameters and powerful neighborhood search ability. Experimental studies are carried out on a benchmark set, and the results show that LiNDE significantly improved the performance of DE.","PeriodicalId":227004,"journal":{"name":"2010 Second International Conference on Computational Intelligence and Natural Computing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computational Intelligence and Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINC.2010.5643890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In order to improve the ability of neighborhood search of differential evolutionary (DE) algorithm, we propose a new variant of DE with linear neighborhood search, called LiNDE, for global optimization problems (GOPs). LiNDE employs a linear combination of triple vectors taken randomly from evolutionary population. The main characteristics of LiNDE are less parameters and powerful neighborhood search ability. Experimental studies are carried out on a benchmark set, and the results show that LiNDE significantly improved the performance of DE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于邻域搜索的差分进化
为了提高差分进化算法的邻域搜索能力,针对全局优化问题,提出了一种基于线性邻域搜索的差分进化算法LiNDE。LiNDE采用从进化种群中随机抽取的三重向量的线性组合。LiNDE的主要特点是参数少,邻域搜索能力强。在一个基准集上进行了实验研究,结果表明LiNDE显著提高了DE的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary design of ANN structure using genetic algorithm Performance analysis of spread spectrum communication system in fading enviornment and Interference Comprehensive evaluation of forest industries based on rough sets and artificial neural network A new descent algorithm with curve search rule for unconstrained minimization A multi-agent simulation for intelligence economy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1