{"title":"A computational approach to parameter identification of spatially distributed nonlinear systems with unknown initial conditions","authors":"J. Kasać, V. Milić, J. Stepanic, G. Mester","doi":"10.1109/RIISS.2014.7009170","DOIUrl":null,"url":null,"abstract":"In this paper, a high-precision algorithm for parameter identification of nonlinear multivariable dynamic systems is proposed. The proposed computational approach is based on the following assumptions: a) system is nonlinearly parameterized by a vector of unknown system parameters; b) only partial measurement of system state is available; c) there are no state observers; d) initial conditions are unknown except for measurable system states. The identification problem is formulated as a continuous dynamic optimization problem which is discretized by higher-order Adams method and numerically solved by a backward-in-time recurrent algorithm which is similar to the backpropagation-through-time (BPTT) algorithm. The proposed algorithm is especially effective for identification of homogenous spatially distributed nonlinear systems what is demonstrated on the parameter identification of a multi-degree-of-freedom torsional system with nonlinearly parameterized elastic forces, unknown initial velocities and positions measurement only.","PeriodicalId":270157,"journal":{"name":"2014 IEEE Symposium on Robotic Intelligence in Informationally Structured Space (RiiSS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Robotic Intelligence in Informationally Structured Space (RiiSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIISS.2014.7009170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
In this paper, a high-precision algorithm for parameter identification of nonlinear multivariable dynamic systems is proposed. The proposed computational approach is based on the following assumptions: a) system is nonlinearly parameterized by a vector of unknown system parameters; b) only partial measurement of system state is available; c) there are no state observers; d) initial conditions are unknown except for measurable system states. The identification problem is formulated as a continuous dynamic optimization problem which is discretized by higher-order Adams method and numerically solved by a backward-in-time recurrent algorithm which is similar to the backpropagation-through-time (BPTT) algorithm. The proposed algorithm is especially effective for identification of homogenous spatially distributed nonlinear systems what is demonstrated on the parameter identification of a multi-degree-of-freedom torsional system with nonlinearly parameterized elastic forces, unknown initial velocities and positions measurement only.