Nozomi - a fast, memory-efficient stack decoder for LVCSR

M. Schuster
{"title":"Nozomi - a fast, memory-efficient stack decoder for LVCSR","authors":"M. Schuster","doi":"10.21437/ICSLP.1998-627","DOIUrl":null,"url":null,"abstract":"This paper describes some of the implementation details of the \\Nozomi\" 1 stack decoder for LVCSR. The decoder was tested on a Japanese Newspaper Dictation Task using a 5000 word vocabulary. Using continuous density acoustic models with 2000 and 3000 states trained on the JNAS/ASJ corpora and a 3-gram LM trained on the RWC text corpus, both models provided by the IPA group [7], it was possible to reach more than 95% word accuracy on the standard test set. With computationally cheap acoustic models we could achieve around 89% accuracy in nearly realtime on a 300 Mhz Pentium II. Using a disk-based LM the memory usage could be optimized to 4 MB in total.","PeriodicalId":117113,"journal":{"name":"5th International Conference on Spoken Language Processing (ICSLP 1998)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Spoken Language Processing (ICSLP 1998)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/ICSLP.1998-627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper describes some of the implementation details of the \Nozomi" 1 stack decoder for LVCSR. The decoder was tested on a Japanese Newspaper Dictation Task using a 5000 word vocabulary. Using continuous density acoustic models with 2000 and 3000 states trained on the JNAS/ASJ corpora and a 3-gram LM trained on the RWC text corpus, both models provided by the IPA group [7], it was possible to reach more than 95% word accuracy on the standard test set. With computationally cheap acoustic models we could achieve around 89% accuracy in nearly realtime on a 300 Mhz Pentium II. Using a disk-based LM the memory usage could be optimized to 4 MB in total.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nozomi -一个快速,内存高效的LVCSR堆栈解码器
本文介绍了用于LVCSR的\Nozomi" 1堆栈解码器的一些实现细节。该解码器在一个使用5000个单词的日语报纸听写任务中进行了测试。使用IPA组[7]提供的在JNAS/ASJ语料库上训练的2000和3000状态的连续密度声学模型和在RWC文本语料库上训练的3克LM模型,在标准测试集上可以达到95%以上的单词准确率。使用计算成本低廉的声学模型,我们可以在300 Mhz的Pentium II上几乎实时地达到89%的精度。使用基于磁盘的LM,内存使用可以优化到总共4 MB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assimilation of place in Japanese and dutch Articulatory analysis using a codebook for articulatory based low bit-rate speech coding Phonetic and phonological characteristics of paralinguistic information in spoken Japanese HMM-based visual speech recognition using intensity and location normalization Speech recognition via phonetically featured syllables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1