{"title":"Fault-tolerant control under controller-driven sampling using a virtual actuator strategy","authors":"Esteban N. Osella, H. Haimovich, M. Seron","doi":"10.1109/AUCC.2013.6697287","DOIUrl":null,"url":null,"abstract":"We present a new output feedback fault tolerant control strategy for continuous-time linear systems. The strategy combines a digital nominal controller under controller-driven (varying) sampling with virtual-actuator (VA)-based controller reconfiguration to compensate for actuator faults. In the proposed scheme, the controller controls both the plant and the sampling period, and a fault detection mechanism performs controller reconfiguration by engaging in the loop the VA adapted to the diagnosed fault. The VA also operates under controller-driven sampling. Two independent objectives are considered: (a) closed-loop stability with setpoint tracking and (b) controller reconfiguration under faults. Our main contribution is to extend an existing VA-based controller reconfiguration strategy to systems under controller-driven sampling in such a way that if objective (a) is possible under controller-driven sampling (without VA) and objective (b) is possible under uniform sampling (without controller-driven sampling), then closed-loop stability and setpoint tracking will be preserved under both healthy and faulty operation for all possible sampling rate evolutions.","PeriodicalId":177490,"journal":{"name":"2013 Australian Control Conference","volume":"361 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Australian Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUCC.2013.6697287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We present a new output feedback fault tolerant control strategy for continuous-time linear systems. The strategy combines a digital nominal controller under controller-driven (varying) sampling with virtual-actuator (VA)-based controller reconfiguration to compensate for actuator faults. In the proposed scheme, the controller controls both the plant and the sampling period, and a fault detection mechanism performs controller reconfiguration by engaging in the loop the VA adapted to the diagnosed fault. The VA also operates under controller-driven sampling. Two independent objectives are considered: (a) closed-loop stability with setpoint tracking and (b) controller reconfiguration under faults. Our main contribution is to extend an existing VA-based controller reconfiguration strategy to systems under controller-driven sampling in such a way that if objective (a) is possible under controller-driven sampling (without VA) and objective (b) is possible under uniform sampling (without controller-driven sampling), then closed-loop stability and setpoint tracking will be preserved under both healthy and faulty operation for all possible sampling rate evolutions.