Prediction of Developer Participation in Issues of Open Source Projects

André Luis Schwerz, Rafael Liberato, I. Wiese, Igor Steinmacher, M. Gerosa, J. E. Ferreira
{"title":"Prediction of Developer Participation in Issues of Open Source Projects","authors":"André Luis Schwerz, Rafael Liberato, I. Wiese, Igor Steinmacher, M. Gerosa, J. E. Ferreira","doi":"10.1109/SBSC.2012.27","DOIUrl":null,"url":null,"abstract":"Developers of distributed open source projects use management and issues tracking tool to communicate. These tools provide a large volume of unstructured information that makes the triage of issues difficult, increasing developers' overhead. This problem is common to online communities based on volunteer participation. This paper shows the importance of the content of comments in an open source project to build a classifier to predict the participation for a developer in an issue. To design this prediction model, we used two machine learning algorithms called Naive Bayes and J48. We used the data of three Apache Hadoop subprojects to evaluate the use of the algorithms. By applying our approach to the most active developers of these subprojects we have achieved an accuracy ranging from 79% to 96%. The results indicate that the content of comments in issues of open source projects is a relevant factor to build a classifier of issues for developers.","PeriodicalId":257965,"journal":{"name":"2012 Brazilian Symposium on Collaborative Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Brazilian Symposium on Collaborative Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBSC.2012.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Developers of distributed open source projects use management and issues tracking tool to communicate. These tools provide a large volume of unstructured information that makes the triage of issues difficult, increasing developers' overhead. This problem is common to online communities based on volunteer participation. This paper shows the importance of the content of comments in an open source project to build a classifier to predict the participation for a developer in an issue. To design this prediction model, we used two machine learning algorithms called Naive Bayes and J48. We used the data of three Apache Hadoop subprojects to evaluate the use of the algorithms. By applying our approach to the most active developers of these subprojects we have achieved an accuracy ranging from 79% to 96%. The results indicate that the content of comments in issues of open source projects is a relevant factor to build a classifier of issues for developers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发人员参与开源项目问题的预测
分布式开源项目的开发人员使用管理和问题跟踪工具进行交流。这些工具提供了大量的非结构化信息,使问题分类变得困难,增加了开发人员的开销。这个问题在基于志愿者参与的在线社区中很常见。本文展示了在开源项目中,评论内容对于构建一个分类器来预测开发人员在某个问题中的参与程度的重要性。为了设计这个预测模型,我们使用了两种机器学习算法,分别是朴素贝叶斯和J48。我们使用三个Apache Hadoop子项目的数据来评估算法的使用情况。通过将我们的方法应用于这些子项目中最活跃的开发人员,我们已经实现了从79%到96%的准确率。结果表明,开源项目issue中评论的内容是为开发者构建issue分类器的一个相关因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Approach to Support Algorithms Learning Using Virtual Worlds Analysis of Security Messages Posted on Twitter An Overview of Evaluation Methods for Collaborative Systems Text Recognition for Concept Maps Construction in Collaborative Environments Analysis of a Social Network as a Knowledge Management Tool
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1