Translation-invariant scene grouping

Pin-Ching Su, Hwann-Tzong Chen, Koichi Ito, T. Aoki
{"title":"Translation-invariant scene grouping","authors":"Pin-Ching Su, Hwann-Tzong Chen, Koichi Ito, T. Aoki","doi":"10.1109/ACPR.2011.6166542","DOIUrl":null,"url":null,"abstract":"We present a new approach to the problem of grouping similar scene images. The proposed method characterizes both the global feature layout and the local oriented edge responses of an image, and provides a translation-invariant similarity measure to compare scene images. Our method is effective in generating initial clustering results for applications that require extensive local-feature matching on unorganized image collections, such as large-scale 3D reconstruction and scene completion. The advantage of our method is that it can estimate image similarity via integrating global and local information. The experimental evaluations on various image datasets show that our method is able to approximate well the similarities derived from local-feature matching with a lower computational cost.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new approach to the problem of grouping similar scene images. The proposed method characterizes both the global feature layout and the local oriented edge responses of an image, and provides a translation-invariant similarity measure to compare scene images. Our method is effective in generating initial clustering results for applications that require extensive local-feature matching on unorganized image collections, such as large-scale 3D reconstruction and scene completion. The advantage of our method is that it can estimate image similarity via integrating global and local information. The experimental evaluations on various image datasets show that our method is able to approximate well the similarities derived from local-feature matching with a lower computational cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平移不变场景分组
我们提出了一种新的方法来解决相似场景图像的分组问题。该方法同时表征了图像的全局特征布局和局部定向边缘响应,并提供了一种平移不变的相似度量来比较场景图像。对于需要在无组织图像集合上进行大量局部特征匹配的应用,例如大规模3D重建和场景补全,我们的方法在生成初始聚类结果方面是有效的。该方法的优点是可以通过综合全局和局部信息来估计图像的相似度。在不同图像数据集上的实验评估表明,我们的方法能够很好地逼近由局部特征匹配得到的相似度,并且计算成本较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geolocation based image annotation Discriminant appearance weighting for action recognition Tree crown detection in high resolution optical images during the early growth stages of Eucalyptus plantations in Brazil Designing and selecting features for MR image segmentation Adaptive Patch Alignment Based Local Binary Patterns for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1