Analysis and Development of the MLOps Pipeline for ML Model Deployment

Rustem Raficovich Yamikov, K. Grigorian
{"title":"Analysis and Development of the MLOps Pipeline for ML Model Deployment","authors":"Rustem Raficovich Yamikov, K. Grigorian","doi":"10.26907/1562-5419-2022-25-2-177-196","DOIUrl":null,"url":null,"abstract":"The growth in the number of IT products with machine-learning features is increasing the relevance of automating machine-learning processes. The use of MLOps techniques is aimed at providing training and efficient deployment of applications in a production environment by automating side infrastructure issues that are not directly related to model development. \nIn this paper, we review the components, principles, and approaches of MLOps and analyze existing platforms and solutions for building machine learning pipelines. In addition, we propose an approach to build a machine learning pipeline based on basic DevOps tools and open-source libraries.","PeriodicalId":262909,"journal":{"name":"Russian Digital Libraries Journal","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Digital Libraries Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26907/1562-5419-2022-25-2-177-196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The growth in the number of IT products with machine-learning features is increasing the relevance of automating machine-learning processes. The use of MLOps techniques is aimed at providing training and efficient deployment of applications in a production environment by automating side infrastructure issues that are not directly related to model development. In this paper, we review the components, principles, and approaches of MLOps and analyze existing platforms and solutions for building machine learning pipelines. In addition, we propose an approach to build a machine learning pipeline based on basic DevOps tools and open-source libraries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向ML模型部署的MLOps流水线的分析与开发
具有机器学习功能的IT产品数量的增长正在增加自动化机器学习过程的相关性。MLOps技术的使用旨在通过自动化与模型开发不直接相关的侧基础设施问题,在生产环境中提供应用程序的培训和有效部署。在本文中,我们回顾了MLOps的组件、原理和方法,并分析了构建机器学习管道的现有平台和解决方案。此外,我们提出了一种基于基本DevOps工具和开源库构建机器学习管道的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How the Latest Release Date of Publication is Formed in Bibliographic Reference "On the Fly" Stages of the Difficult Way (On the Computerization of Economic Research) Digital Platform for Supercomputer Mathematical Modeling of Spraying Processes Organization of Calculations and Work with Memory in the Educational Programming Language SYNHRO Semantic Annotation of Mathematical Formulas in PDF-Documents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1