Online Tracking of Bearing Wear using Wavelet Packet Transform and Hidden Markov Models

H. Ocak, H. Ertunc, K. Loparo
{"title":"Online Tracking of Bearing Wear using Wavelet Packet Transform and Hidden Markov Models","authors":"H. Ocak, H. Ertunc, K. Loparo","doi":"10.1109/SIU.2006.1659861","DOIUrl":null,"url":null,"abstract":"In this work, a new method was developed based on wavelet packet decomposition and hidden Markov modeling (HMM) for monitoring bearing faults. In this new scheme, vibration signals were decomposed into wavelet packets and the node energies of the decomposition were used as features. An HMM was built to model the normal bearing operating condition based on the features extracted from normal bearing vibration signals. The probabilities of this HMM were then used to monitor the bearing condition. Experimental data collected from a bearing accelerated life test clearly showed this new method's superiority over classical methods","PeriodicalId":415037,"journal":{"name":"2006 IEEE 14th Signal Processing and Communications Applications","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 14th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2006.1659861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, a new method was developed based on wavelet packet decomposition and hidden Markov modeling (HMM) for monitoring bearing faults. In this new scheme, vibration signals were decomposed into wavelet packets and the node energies of the decomposition were used as features. An HMM was built to model the normal bearing operating condition based on the features extracted from normal bearing vibration signals. The probabilities of this HMM were then used to monitor the bearing condition. Experimental data collected from a bearing accelerated life test clearly showed this new method's superiority over classical methods
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波包变换和隐马尔可夫模型的轴承磨损在线跟踪
提出了一种基于小波包分解和隐马尔可夫建模(HMM)的轴承故障监测新方法。该方法将振动信号分解成小波包,并以小波包的节点能量作为特征。根据轴承正常振动信号提取的特征,建立HMM模型对轴承正常运行状态进行建模。然后使用该HMM的概率来监测轴承状况。从轴承加速寿命试验中收集的实验数据清楚地表明,这种新方法优于经典方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Peer-to-Peer Multipoint Video Conferencing Using Layered Video Determination of Product Surface Quality Watermarking Tools for Turkish Texts By Using Darlington Topology Improvement of In-Band Gain for the Log Domain Filters Dual Wideband Antenna Analysis for Linear FMCW Radar Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1