Effect of Network Topology on the Performance of ADMM-Based SVMs

Shirin Tavara, Alexander Schliep
{"title":"Effect of Network Topology on the Performance of ADMM-Based SVMs","authors":"Shirin Tavara, Alexander Schliep","doi":"10.1109/CAHPC.2018.8645857","DOIUrl":null,"url":null,"abstract":"Alternating Direction Method Of Multipliers (ADMM) is one of the promising frameworks for training Support Vector Machines (SVMs) on large-scale data in a distributed manner. In a consensus-based ADMM, nodes may only communicate with one-hop neighbors and this may cause slow convergence. In this paper, we investigate the impact of network topology on the convergence speed of ADMM-based SVMs using expander graphs. In particular, we investigate how much the expansion property of the network influence the convergence and which topology is preferable. Besides, we supply an implementation making these theoretical advances practically available. The results of the experiments show that graphs with large spectral gaps and higher degrees exhibit accelerated convergence.","PeriodicalId":307747,"journal":{"name":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAHPC.2018.8645857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Alternating Direction Method Of Multipliers (ADMM) is one of the promising frameworks for training Support Vector Machines (SVMs) on large-scale data in a distributed manner. In a consensus-based ADMM, nodes may only communicate with one-hop neighbors and this may cause slow convergence. In this paper, we investigate the impact of network topology on the convergence speed of ADMM-based SVMs using expander graphs. In particular, we investigate how much the expansion property of the network influence the convergence and which topology is preferable. Besides, we supply an implementation making these theoretical advances practically available. The results of the experiments show that graphs with large spectral gaps and higher degrees exhibit accelerated convergence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网络拓扑结构对基于admm的svm性能的影响
交替方向乘法器(ADMM)是一种很有前途的支持向量机(svm)分布式大规模数据训练框架。在基于共识的ADMM中,节点可能只与一跳邻居通信,这可能导致收敛缓慢。本文利用扩展图研究了网络拓扑结构对基于admm的支持向量机收敛速度的影响。特别地,我们研究了网络的扩展特性对收敛性的影响程度以及哪种拓扑结构更可取。此外,我们还提供了一个实现,使这些理论进展在实践中可用。实验结果表明,谱隙大、谱度高的图收敛速度加快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Time Predictability Features of ARM Big. LITTLE Multicores Impacts of Three Soft-Fault Models on Hybrid Parallel Asynchronous Iterative Methods Predicting the Performance Impact of Increasing Memory Bandwidth for Scientific Workflows From Java to FPGA: An Experience with the Intel HARP System Copyright
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1