Adaptive slicing for the FDM process revisited

Florens Wasserfall, N. Hendrich, Jianwei Zhang
{"title":"Adaptive slicing for the FDM process revisited","authors":"Florens Wasserfall, N. Hendrich, Jianwei Zhang","doi":"10.1109/COASE.2017.8256074","DOIUrl":null,"url":null,"abstract":"Adaptively computing the layer heights for 3D-printed parts has the potential to achieve high quality results while maintaining a reasonably short printing time. The basic concept, several error measures and variations of the algorithm have been around in the literature for two decades now, but never showed significant impact on widely used slicing software. Users of our early test implementations reported two major drawbacks of the existing approaches: the control measures are not intuitively usable and the resulting height distribution in many cases is not optimal for an object, requiring extensive post-editing. In this paper, we propose a more intuitive control measure and implementation based on the volumetric surface error and a subsequent manual refinement of layer heights by manipulating an interpolated height-curve. We describe the efficient computation of adaptive layers by analyzing the model surface over the full layer height. All implementations are available as ready-to-use open source software.","PeriodicalId":445441,"journal":{"name":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2017.8256074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Adaptively computing the layer heights for 3D-printed parts has the potential to achieve high quality results while maintaining a reasonably short printing time. The basic concept, several error measures and variations of the algorithm have been around in the literature for two decades now, but never showed significant impact on widely used slicing software. Users of our early test implementations reported two major drawbacks of the existing approaches: the control measures are not intuitively usable and the resulting height distribution in many cases is not optimal for an object, requiring extensive post-editing. In this paper, we propose a more intuitive control measure and implementation based on the volumetric surface error and a subsequent manual refinement of layer heights by manipulating an interpolated height-curve. We describe the efficient computation of adaptive layers by analyzing the model surface over the full layer height. All implementations are available as ready-to-use open source software.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新讨论了FDM过程的自适应切片
自适应计算3d打印部件的层高度有可能在保持相当短的打印时间的同时获得高质量的结果。该算法的基本概念、几种误差测量和变体已经在文献中出现了二十年,但从未对广泛使用的切片软件产生重大影响。我们早期测试实现的用户报告了现有方法的两个主要缺点:控制措施不是直观可用的,并且在许多情况下产生的高度分布对对象来说不是最佳的,需要大量的后期编辑。在本文中,我们提出了一种更直观的控制措施和实现,基于体积表面误差和随后通过操纵插值高度曲线来手动细化层高度。我们通过分析整个层高上的模型表面来描述自适应层的有效计算。所有的实现都是现成的开源软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study on performance evaluation and status-based decision for cyber-physical production systems Optimization of deterministic timed weighted marked graphs An optimization-simulation approach for long term care structure assignment problem for elderly people Stochastic simulation of clinical pathways from raw health databases A circuit-breaker use-case operated by a humanoid in aircraft manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1