Analyzing fault prediction usefulness from cost perspective using source code metrics

L. Kumar, A. Sureka
{"title":"Analyzing fault prediction usefulness from cost perspective using source code metrics","authors":"L. Kumar, A. Sureka","doi":"10.1109/IC3.2017.8284297","DOIUrl":null,"url":null,"abstract":"Software fault prediction techniques are useful for the purpose of optimizing test resource allocation. Software fault prediction based on source code metrics and machine learning models consists of using static program features as input predictors to estimate the fault proneness of a class or module. We conduct a comparison of five machine learning algorithms on their fault prediction performance based on experiments on 56 open source projects. Several researchers have argued on the application of software engineering economics and testing cost for the purpose of evaluating a software quality assurance activity. We evaluate the performance and usefulness of fault prediction models within the context of a cost evaluation framework and present the results of our experiments. We propose a novel approach using decision trees to predict the usefulness of fault prediction based on distributional characteristics of source code metrics by fusing information from the output of the fault prediction usefulness using cost evaluation framework and distributional source code metrics.","PeriodicalId":147099,"journal":{"name":"2017 Tenth International Conference on Contemporary Computing (IC3)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Tenth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2017.8284297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Software fault prediction techniques are useful for the purpose of optimizing test resource allocation. Software fault prediction based on source code metrics and machine learning models consists of using static program features as input predictors to estimate the fault proneness of a class or module. We conduct a comparison of five machine learning algorithms on their fault prediction performance based on experiments on 56 open source projects. Several researchers have argued on the application of software engineering economics and testing cost for the purpose of evaluating a software quality assurance activity. We evaluate the performance and usefulness of fault prediction models within the context of a cost evaluation framework and present the results of our experiments. We propose a novel approach using decision trees to predict the usefulness of fault prediction based on distributional characteristics of source code metrics by fusing information from the output of the fault prediction usefulness using cost evaluation framework and distributional source code metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用源代码度量从成本角度分析故障预测的有效性
软件故障预测技术有助于优化测试资源的分配。基于源代码度量和机器学习模型的软件故障预测包括使用静态程序特征作为输入预测器来估计类或模块的故障倾向。基于56个开源项目的实验,我们对5种机器学习算法的故障预测性能进行了比较。为了评估软件质量保证活动,一些研究人员争论了软件工程经济学和测试成本的应用。我们在成本评估框架的背景下评估故障预测模型的性能和有用性,并给出我们的实验结果。本文提出了一种基于源代码度量分布特征的决策树故障预测有用性预测方法,该方法采用成本评估框架和分布式源代码度量融合故障预测有用性输出信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clickstream & behavioral analysis with context awareness for e-commercial applications Clustering based minimum spanning tree algorithm Sarcasm detection of tweets: A comparative study Quantum genetic algorithm with rotation angle refinement for dependent task scheduling on distributed systems An approach to maintain attendance using image processing techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1