GPU-Accelerated PCG Method for the Block Adjustment of Large-Scale High-Resolution Optical Satellite Imagery Without GCPs

Qiankun Fu, X. Tong, Shijie Liu, Z. Ye, Yanmin Jin, Hanyu Wang, Z. Hong
{"title":"GPU-Accelerated PCG Method for the Block Adjustment of Large-Scale High-Resolution Optical Satellite Imagery Without GCPs","authors":"Qiankun Fu, X. Tong, Shijie Liu, Z. Ye, Yanmin Jin, Hanyu Wang, Z. Hong","doi":"10.14358/pers.22-00051r2","DOIUrl":null,"url":null,"abstract":"The precise geo-positioning of high-resolution satellite imagery (HRSI) without ground control points (GCPs) is an important and fundamental step in global mapping, three-dimensional modeling, and so on. In this paper, to improve the efficiency of large-scale bundle adjustment (BA),\n we propose a combined Preconditioned Conjugate Gradient (PCG) and Graphic Processing Unit (GPU) parallel computing approach for the BA of large-scale HRSI without GCPs. The proposed approach consists of three main components: 1) construction of a BA model without GCPs ; 2) reduction of memory\n consumption using the Compressed Sparse Row sparse matrix format; and 3) improvement of the computational efficiency by the use of the combined PCG and GPU parallel computing method. The experimental results showed that the proposed method: 1) consumes less memory consumption compared to the\n conventional full matrix format method; 2) demonstrates higher computational efficiency than the single-core, Ceres-solver and multi-core central processing unit computing methods, with 9.48, 6.82, and 3.05 times faster than the above three methods, respectively; 3) obtains comparable BA accuracy\n with the above three methods, with image residuals of about 0.9 pixels; and 4) is superior to the parallel bundle adjustment method in the reprojection error.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.22-00051r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The precise geo-positioning of high-resolution satellite imagery (HRSI) without ground control points (GCPs) is an important and fundamental step in global mapping, three-dimensional modeling, and so on. In this paper, to improve the efficiency of large-scale bundle adjustment (BA), we propose a combined Preconditioned Conjugate Gradient (PCG) and Graphic Processing Unit (GPU) parallel computing approach for the BA of large-scale HRSI without GCPs. The proposed approach consists of three main components: 1) construction of a BA model without GCPs ; 2) reduction of memory consumption using the Compressed Sparse Row sparse matrix format; and 3) improvement of the computational efficiency by the use of the combined PCG and GPU parallel computing method. The experimental results showed that the proposed method: 1) consumes less memory consumption compared to the conventional full matrix format method; 2) demonstrates higher computational efficiency than the single-core, Ceres-solver and multi-core central processing unit computing methods, with 9.48, 6.82, and 3.05 times faster than the above three methods, respectively; 3) obtains comparable BA accuracy with the above three methods, with image residuals of about 0.9 pixels; and 4) is superior to the parallel bundle adjustment method in the reprojection error.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无gcp大尺度高分辨率光学卫星图像块平差的gpu加速PCG方法
无地面控制点的高分辨率卫星影像(HRSI)精确地理定位是全球制图、三维建模等领域的重要基础步骤。为了提高大规模束调整(BA)的效率,本文提出了一种结合预条件共轭梯度(PCG)和图形处理单元(GPU)的并行计算方法,用于无gcp的大规模HRSI束调整。该方法主要由三个部分组成:1)构建不含gcp的BA模型;2)使用压缩稀疏行稀疏矩阵格式减少内存消耗;3)采用PCG和GPU相结合的并行计算方法提高了计算效率。实验结果表明:1)与传统的全矩阵格式方法相比,该方法占用的内存较少;2)与单核、Ceres-solver和多核中央处理器计算方法相比,计算效率更高,分别比上述三种方法快9.48倍、6.82倍和3.05倍;3)以上三种方法的BA精度相当,图像残差约为0.9像素;4)在重投影误差上优于平行束平差法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ReLAP-Net: Residual Learning and Attention Based Parallel Network for Hyperspectral and Multispectral Image Fusion Book Review ‐ Top 20 Essential Skills for ArcGIS Pro A Surface Water Extraction Method Integrating Spectral and Temporal Characteristics Assessing the Utility of Uncrewed Aerial System Photogrammetrically Derived Point Clouds for Land Cover Classification in the Alaska North Slope GIS Tips & Tricks ‐ USGS Adds 100K Topo Scale to OnDemand Map Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1