{"title":"Modelling MTPL insurance claim events: Can machine learning methods overperform the traditional GLM approach?","authors":"David Burka, László Kovács, László Szepesváry","doi":"10.35618/hsr2021.02.en034","DOIUrl":null,"url":null,"abstract":"Pricing an insurance product covering motor third-party liability is a major challenge for actuaries. Comprehensive statistical modelling and modern computational power are necessary to solve this problem. The generalised linear and additive modelling approaches have been widely used by insurance companies for a long time. Modelling with modern machine learning methods has recently started, but applying them properly with relevant features is a great issue for pricing experts. This study analyses the claim-causing probability by fitting generalised linear modelling, generalised additive modelling, random forest, and neural network models. Several evaluation measures are used to compare these techniques. The best model is a mixture of the base methods. The authors’ hypothesis about the existence of significant interactions between feature variables is proved by the models. A simplified classification and visualisation is performed on the final model, which can support tariff applications later.","PeriodicalId":119089,"journal":{"name":"Hungarian Statistical Review","volume":"202 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hungarian Statistical Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35618/hsr2021.02.en034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Pricing an insurance product covering motor third-party liability is a major challenge for actuaries. Comprehensive statistical modelling and modern computational power are necessary to solve this problem. The generalised linear and additive modelling approaches have been widely used by insurance companies for a long time. Modelling with modern machine learning methods has recently started, but applying them properly with relevant features is a great issue for pricing experts. This study analyses the claim-causing probability by fitting generalised linear modelling, generalised additive modelling, random forest, and neural network models. Several evaluation measures are used to compare these techniques. The best model is a mixture of the base methods. The authors’ hypothesis about the existence of significant interactions between feature variables is proved by the models. A simplified classification and visualisation is performed on the final model, which can support tariff applications later.