Context-Based Appearance Descriptor for 3D Human Pose Estimation from Monocular Images

S. Sedai, Bennamoun, D. Huynh
{"title":"Context-Based Appearance Descriptor for 3D Human Pose Estimation from Monocular Images","authors":"S. Sedai, Bennamoun, D. Huynh","doi":"10.1109/DICTA.2009.81","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel appearance descriptor for 3D human pose estimation from monocular images using a learning-based technique. Our image-descriptor is based on the intermediate local appearance descriptors that we design to encapsulate local appearance context and to be resilient to noise. We encode the image by the histogram of such local appearance context descriptors computed in an image to obtain the final image-descriptor for pose estimation. We name the final image-descriptor the Histogram of Local Appearance Context (HLAC). We then use Relevance Vector Machine (RVM) regression to learn the direct mapping between the proposed HLAC image-descriptor space and the 3D pose space. Given a test image, we first compute the HLAC descriptor and then input it to the trained regressor to obtain the final output pose in real time. We compared our approach with other methods using a synchronized video and 3D motion dataset. We compared our proposed HLAC image-descriptor with the Histogram of Shape Context and Histogram of SIFT like descriptors. The evaluation results show that HLAC descriptor outperforms both of them in the context of 3D Human pose estimation.","PeriodicalId":277395,"journal":{"name":"2009 Digital Image Computing: Techniques and Applications","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2009.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

In this paper we propose a novel appearance descriptor for 3D human pose estimation from monocular images using a learning-based technique. Our image-descriptor is based on the intermediate local appearance descriptors that we design to encapsulate local appearance context and to be resilient to noise. We encode the image by the histogram of such local appearance context descriptors computed in an image to obtain the final image-descriptor for pose estimation. We name the final image-descriptor the Histogram of Local Appearance Context (HLAC). We then use Relevance Vector Machine (RVM) regression to learn the direct mapping between the proposed HLAC image-descriptor space and the 3D pose space. Given a test image, we first compute the HLAC descriptor and then input it to the trained regressor to obtain the final output pose in real time. We compared our approach with other methods using a synchronized video and 3D motion dataset. We compared our proposed HLAC image-descriptor with the Histogram of Shape Context and Histogram of SIFT like descriptors. The evaluation results show that HLAC descriptor outperforms both of them in the context of 3D Human pose estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于上下文的单眼图像三维人体姿态估计描述符
在本文中,我们提出了一种新的外观描述符,用于从单眼图像中估计三维人体姿势。我们的图像描述符基于中间局部外观描述符,我们设计这些描述符来封装局部外观上下文并对噪声具有弹性。我们通过在图像中计算这些局部外观上下文描述符的直方图对图像进行编码,以获得用于姿态估计的最终图像描述符。我们将最终的图像描述符命名为局部外观上下文直方图(HLAC)。然后,我们使用相关向量机(RVM)回归来学习所提出的HLAC图像描述符空间与3D姿态空间之间的直接映射。给定一个测试图像,我们首先计算HLAC描述符,然后将其输入到训练好的回归器中,以实时获得最终的输出姿态。我们将我们的方法与使用同步视频和3D运动数据集的其他方法进行了比较。我们将提出的HLAC图像描述符与形状上下文直方图和SIFT类描述符直方图进行了比较。评估结果表明,HLAC描述符在三维人体姿态估计中优于两者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Video Surveillance: Legally Blind? Mixed Pixel Analysis for Flood Mapping Using Extended Support Vector Machine 3D Reconstruction of Patient Specific Bone Models from 2D Radiographs for Image Guided Orthopedic Surgery Improved Single Image Dehazing Using Geometry Crowd Counting Using Multiple Local Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1