Prediction of Oblique Saccade Trajectories Using Learned Velocity Profile Parameter Mappings

Henry K. Griffith, Samantha Aziz, Oleg V. Komogortsev
{"title":"Prediction of Oblique Saccade Trajectories Using Learned Velocity Profile Parameter Mappings","authors":"Henry K. Griffith, Samantha Aziz, Oleg V. Komogortsev","doi":"10.1109/CCWC47524.2020.9031274","DOIUrl":null,"url":null,"abstract":"This manuscript proposes and validates two techniques for predicting the trajectory of oblique saccades using a Gaussian velocity profile model. Profile parameters and event duration are estimated at the onset of each saccade using support vector machine regression models. The proposed techniques are evaluated using a set of 47,652 saccades with a mean amplitude of 12.25 degrees of the visual angle gathered from 322 subjects during a random saccade task. Numerous performance metrics are evaluated for predictions made at various fractions of the saccade duration. An average landing point estimation error of less than three degrees of the visual angle is obtained for predictions formed at 30% of the saccade duration.","PeriodicalId":161209,"journal":{"name":"2020 10th Annual Computing and Communication Workshop and Conference (CCWC)","volume":"333 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 10th Annual Computing and Communication Workshop and Conference (CCWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCWC47524.2020.9031274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This manuscript proposes and validates two techniques for predicting the trajectory of oblique saccades using a Gaussian velocity profile model. Profile parameters and event duration are estimated at the onset of each saccade using support vector machine regression models. The proposed techniques are evaluated using a set of 47,652 saccades with a mean amplitude of 12.25 degrees of the visual angle gathered from 322 subjects during a random saccade task. Numerous performance metrics are evaluated for predictions made at various fractions of the saccade duration. An average landing point estimation error of less than three degrees of the visual angle is obtained for predictions formed at 30% of the saccade duration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用学习速度剖面参数映射预测斜视眼动轨迹
本文提出并验证了使用高斯速度剖面模型预测斜视扫视轨迹的两种技术。在每次扫视开始时,使用支持向量机回归模型估计轮廓参数和事件持续时间。在随机的扫视任务中,从322名受试者中收集了47,652次扫视,平均幅度为12.25度的视角,对所提出的技术进行了评估。对于在扫视持续时间的不同部分所做的预测,将评估许多性能指标。平均着陆点估计误差小于3度的视角的预测形成在30%的扫视持续时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Environmental Perception in Autonomous Vehicles Using Edge Level Situational Awareness Secure5G: A Deep Learning Framework Towards a Secure Network Slicing in 5G and Beyond Focus Detection Using Spatial Release From Masking An Intrusion Detection System Against DDoS Attacks in IoT Networks The self- upgrading mobile application for the automatic malaria detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1