Object detection for rotated and densely arranged objects in aerial images using path aggregated feature pyramid networks

Xiangyu Liu, Hong Pan, Xinde Li
{"title":"Object detection for rotated and densely arranged objects in aerial images using path aggregated feature pyramid networks","authors":"Xiangyu Liu, Hong Pan, Xinde Li","doi":"10.1117/12.2538090","DOIUrl":null,"url":null,"abstract":"Object detection based on deep learning algorithms has been an important yet challenging research field in computer vision. The feature pyramid network has become a dominant network architecture in many detection applications because of its powerful feature learning ability for objects with varying scales. To address the challenges in detecting small and densely packed objects, this paper proposes an innovative object detection approach by combining the path aggregation scheme and the feature pyramid network into a unified framework. Specifically, we add a bottom-up branch with lateral connection onto the existing feature pyramid network and apply adaptive feature fusion strategy, which improves the detection performance for small and densely arranged objects in remote sensing images. Experiment results show that our proposed path aggregated feature pyramid network can improve the detection performance for diverse objects in aerial images.","PeriodicalId":384253,"journal":{"name":"International Symposium on Multispectral Image Processing and Pattern Recognition","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Multispectral Image Processing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2538090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Object detection based on deep learning algorithms has been an important yet challenging research field in computer vision. The feature pyramid network has become a dominant network architecture in many detection applications because of its powerful feature learning ability for objects with varying scales. To address the challenges in detecting small and densely packed objects, this paper proposes an innovative object detection approach by combining the path aggregation scheme and the feature pyramid network into a unified framework. Specifically, we add a bottom-up branch with lateral connection onto the existing feature pyramid network and apply adaptive feature fusion strategy, which improves the detection performance for small and densely arranged objects in remote sensing images. Experiment results show that our proposed path aggregated feature pyramid network can improve the detection performance for diverse objects in aerial images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于路径聚合特征金字塔网络的航空图像旋转密集目标检测
基于深度学习算法的目标检测一直是计算机视觉中一个重要而又具有挑战性的研究领域。特征金字塔网络因其对不同尺度目标的强大特征学习能力,已成为众多检测应用中占主导地位的网络架构。为了解决小而密集的目标检测难题,本文提出了一种将路径聚合方案与特征金字塔网络结合为统一框架的创新目标检测方法。具体来说,我们在已有的特征金字塔网络上增加一个横向连接的自底向上分支,并采用自适应特征融合策略,提高了对遥感图像中小而密集物体的检测性能。实验结果表明,本文提出的路径聚合特征金字塔网络可以提高航拍图像中不同目标的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image fusion for multimodality image via domain transfer and nonrigid transformation Dimensionality reduction of hyperspectral images based on subspace combination clustering and adaptive band selection Remote multi-object detection based on bounding box field Facial morphe via domain translation and FM2RLS Restoration of haze-free images using generative adversarial network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1