Traffic sign recognition based on prevailing bag of visual words representation on feature descriptors

K. Virupakshappa, Yan Han, E. Oruklu
{"title":"Traffic sign recognition based on prevailing bag of visual words representation on feature descriptors","authors":"K. Virupakshappa, Yan Han, E. Oruklu","doi":"10.1109/EIT.2015.7293387","DOIUrl":null,"url":null,"abstract":"Driver Assistance Systems such as traffic sign detection and autonomous car research are largely facilitated with the recent advances on computer vision and pattern recognition. In this work, Bag of visual Words technique has been implemented on Speeded Up Robust Feature (SURF) descriptors of the traffic signs and later the sturdy classifier Support Vector Machine (SVM) is used to categorize the traffic signs to its respective groups. Experimental results demonstrate that the proposed method of implementation can reach an accuracy of 95.2%.","PeriodicalId":415614,"journal":{"name":"2015 IEEE International Conference on Electro/Information Technology (EIT)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Electro/Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2015.7293387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Driver Assistance Systems such as traffic sign detection and autonomous car research are largely facilitated with the recent advances on computer vision and pattern recognition. In this work, Bag of visual Words technique has been implemented on Speeded Up Robust Feature (SURF) descriptors of the traffic signs and later the sturdy classifier Support Vector Machine (SVM) is used to categorize the traffic signs to its respective groups. Experimental results demonstrate that the proposed method of implementation can reach an accuracy of 95.2%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征描述符上流行的视觉词表示包的交通标志识别
驾驶辅助系统,如交通标志检测和自动驾驶汽车的研究很大程度上促进了计算机视觉和模式识别的最新进展。本文首先将视觉词袋技术应用于交通标志的加速鲁棒特征(SURF)描述符,然后利用鲁棒分类器支持向量机(SVM)对交通标志进行分类。实验结果表明,该方法的实现精度达到95.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Space time block code for four time slots and two transmit antennas Social routing: A novel routing protocol for delay tolerant network based on dynamic connectivity Radiation performance and Specific Absorption Rate (SAR) analysis of a compact dual band balanced antenna Design of half bridge LLC resonant converter using synchronous rectifier Frame distance array algorithm parameter tune-up for TIMIT corpus automatic speech segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1