Is min-wise hashing optimal for summarizing set intersection?

R. Pagh, Morten Stöckel, David P. Woodruff
{"title":"Is min-wise hashing optimal for summarizing set intersection?","authors":"R. Pagh, Morten Stöckel, David P. Woodruff","doi":"10.1145/2594538.2594554","DOIUrl":null,"url":null,"abstract":"Min-wise hashing is an important method for estimating the size of the intersection of sets, based on a succinct summary (a \"min-hash\") of each set. One application is estimation of the number of data points that satisfy the conjunction of m >= 2 simple predicates, where a min-hash is available for the set of points satisfying each predicate. This has application in query optimization and for approximate computation of COUNT aggregates. In this paper we address the question: How many bits is it necessary to allocate to each summary in order to get an estimate with (1 +/- epsilon)-relative error? The state-of-the-art technique for minimizing the encoding size, for any desired estimation error, is b-bit min-wise hashing due to Li and König (Communications of the ACM, 2011). We give new lower and upper bounds: Using information complexity arguments, we show that b-bit min-wise hashing is em space optimal for m=2 predicates in the sense that the estimator's variance is within a constant factor of the smallest possible among all summaries with the given space usage. But for conjunctions of m>2 predicates we show that the performance of b-bit min-wise hashing (and more generally any method based on \"k-permutation\" min-hash) deteriorates as m grows. We describe a new summary that nearly matches our lower bound for m >= 2. It asymptotically outperform all k-permutation schemes (by around a factor Omega(m/log m)), as well as methods based on subsampling (by a factor Omega(log n_max), where n_max is the maximum set size).","PeriodicalId":302451,"journal":{"name":"Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2594538.2594554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

Min-wise hashing is an important method for estimating the size of the intersection of sets, based on a succinct summary (a "min-hash") of each set. One application is estimation of the number of data points that satisfy the conjunction of m >= 2 simple predicates, where a min-hash is available for the set of points satisfying each predicate. This has application in query optimization and for approximate computation of COUNT aggregates. In this paper we address the question: How many bits is it necessary to allocate to each summary in order to get an estimate with (1 +/- epsilon)-relative error? The state-of-the-art technique for minimizing the encoding size, for any desired estimation error, is b-bit min-wise hashing due to Li and König (Communications of the ACM, 2011). We give new lower and upper bounds: Using information complexity arguments, we show that b-bit min-wise hashing is em space optimal for m=2 predicates in the sense that the estimator's variance is within a constant factor of the smallest possible among all summaries with the given space usage. But for conjunctions of m>2 predicates we show that the performance of b-bit min-wise hashing (and more generally any method based on "k-permutation" min-hash) deteriorates as m grows. We describe a new summary that nearly matches our lower bound for m >= 2. It asymptotically outperform all k-permutation schemes (by around a factor Omega(m/log m)), as well as methods based on subsampling (by a factor Omega(log n_max), where n_max is the maximum set size).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最小哈希法是总结集合交集的最佳方法吗?
最小哈希是一种重要的估计集合交集大小的方法,它基于每个集合的简洁总结(“最小哈希”)。一个应用是估计满足m >= 2个简单谓词的连接的数据点的数量,其中满足每个谓词的点集可以使用最小哈希。这在查询优化和COUNT聚合的近似计算中有应用。在本文中,我们解决了这样一个问题:为了获得(1 +/- epsilon)相对误差的估计,需要为每个摘要分配多少位?对于任何期望的估计误差,最小化编码大小的最先进技术是由Li和König提出的b位最小哈希(ACM通信,2011)。我们给出了新的下界和上界:使用信息复杂性参数,我们表明b位最小哈希对于m=2谓词是em空间最优的,因为估计器的方差在给定空间使用的所有摘要中可能最小的常数因子内。但是对于m>2谓词的连接,我们表明b位最小哈希(以及更普遍的基于“k-置换”最小哈希的任何方法)的性能随着m的增长而恶化。我们描述了一个新的总结,它几乎与我们的下界匹配,m >= 2。它逐渐优于所有的k-置换方案(大约是一个因子Omega(m/log m)),以及基于子抽样的方法(是一个因子Omega(log n_max),其中n_max是最大集合大小)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: Classics Does query evaluation tractability help query containment? Session details: Web queries and big data On scale independence for querying big data Cleaning inconsistencies in information extraction via prioritized repairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1