Feature Analysis for Computational Personality Recognition Using YouTube Personality Data set

WCPR '14 Pub Date : 2014-11-07 DOI:10.1145/2659522.2659528
Chandrima Sarkar, S. Bhatia, Arvind Agarwal, Juan Li
{"title":"Feature Analysis for Computational Personality Recognition Using YouTube Personality Data set","authors":"Chandrima Sarkar, S. Bhatia, Arvind Agarwal, Juan Li","doi":"10.1145/2659522.2659528","DOIUrl":null,"url":null,"abstract":"It is an important yet challenging task to develop an intelligent system in a way that it automatically classifies human personality traits. Automatic classification of human traits requires the knowledge of significant attributes and features that contribute to the prediction of a given trait. Motivated by the fact that detection of significant features is an essential part of a personality recognition system, we present in this paper an in-depth analysis of audio visual, text, demographic and sentiment features for classification of multi-modal personality traits namely, extraversion, agreeableness, conscientiousness, emotional stability and openness to experience. We use the YouTube personality data set and use logistic regression model with a ridge estimator for the classification purpose. We experiment with audio-visual features, bag of word features, sentiment based and demographic features. Our results provide important insights about the significance of different feature types for personality classification task.","PeriodicalId":423934,"journal":{"name":"WCPR '14","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WCPR '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2659522.2659528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

It is an important yet challenging task to develop an intelligent system in a way that it automatically classifies human personality traits. Automatic classification of human traits requires the knowledge of significant attributes and features that contribute to the prediction of a given trait. Motivated by the fact that detection of significant features is an essential part of a personality recognition system, we present in this paper an in-depth analysis of audio visual, text, demographic and sentiment features for classification of multi-modal personality traits namely, extraversion, agreeableness, conscientiousness, emotional stability and openness to experience. We use the YouTube personality data set and use logistic regression model with a ridge estimator for the classification purpose. We experiment with audio-visual features, bag of word features, sentiment based and demographic features. Our results provide important insights about the significance of different feature types for personality classification task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于YouTube人格数据集的计算人格识别特征分析
开发一种能够自动对人类人格特征进行分类的智能系统是一项重要而又具有挑战性的任务。人类特征的自动分类需要了解重要的属性和特征,这些属性和特征有助于预测给定的特征。鉴于重要特征的检测是人格识别系统的重要组成部分,本文深入分析了视听、文本、人口统计学和情感特征,以分类多模态人格特征,即外向性、宜人性、严谨性、情绪稳定性和经验开放性。我们使用YouTube个性数据集,并使用逻辑回归模型和脊估计器进行分类。我们尝试了视听特征、词包特征、基于情感的特征和人口统计学特征。我们的研究结果对不同特征类型在人格分类任务中的意义提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting Personality Traits using Multimodal Information Evaluating Content-Independent Features for Personality Recognition Look! Who's Talking?: Projection of Extraversion Across Different Social Contexts The Impact of Affective Verbal Content on Predicting Personality Impressions in YouTube Videos A Multivariate Regression Approach to Personality Impression Recognition of Vloggers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1