Communication networks: Traffic data, network topologies, and routing anomalies

L. Trajković
{"title":"Communication networks: Traffic data, network topologies, and routing anomalies","authors":"L. Trajković","doi":"10.1109/SISY.2015.7325382","DOIUrl":null,"url":null,"abstract":"Understanding modern data communication networks such as the Internet involves collection and analysis of data collected from deployed networks. It also calls for development of various tools for analysis of such datasets. Collected traffic data are used for characterization and modeling of network traffic, analysis of Internet topologies, and prediction of network anomalies. In this talk, I will describe collection and analysis of realtime traffic data using special purpose hardware and software tools. Analysis of such collected datasets indicates a complex underlying network infrastructure that carries traffic generated by a variety of the Internet applications. Data collected from the Internet routing tables are used to analyze Internet topologies and to illustrate the existence of historical trends in the development of the Internet. The Internet traffic data are also used to classify and detect network anomalies such as Internet worms, which affect performance of routing protocols and may greatly degrade network performance. Various statistical and machine learning techniques are used to classify test datasets, identify the correct traffic anomaly types, and design anomaly detection mechanisms.","PeriodicalId":144551,"journal":{"name":"2015 IEEE 13th International Symposium on Intelligent Systems and Informatics (SISY)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 13th International Symposium on Intelligent Systems and Informatics (SISY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISY.2015.7325382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding modern data communication networks such as the Internet involves collection and analysis of data collected from deployed networks. It also calls for development of various tools for analysis of such datasets. Collected traffic data are used for characterization and modeling of network traffic, analysis of Internet topologies, and prediction of network anomalies. In this talk, I will describe collection and analysis of realtime traffic data using special purpose hardware and software tools. Analysis of such collected datasets indicates a complex underlying network infrastructure that carries traffic generated by a variety of the Internet applications. Data collected from the Internet routing tables are used to analyze Internet topologies and to illustrate the existence of historical trends in the development of the Internet. The Internet traffic data are also used to classify and detect network anomalies such as Internet worms, which affect performance of routing protocols and may greatly degrade network performance. Various statistical and machine learning techniques are used to classify test datasets, identify the correct traffic anomaly types, and design anomaly detection mechanisms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通信网络:流量数据、网络拓扑和路由异常
理解现代数据通信网络(如Internet)涉及到从已部署的网络收集和分析数据。它还要求开发各种工具来分析这些数据集。收集的流量数据用于网络流量的表征和建模、互联网拓扑分析和网络异常预测。在这次演讲中,我将介绍使用专用硬件和软件工具收集和分析实时交通数据。对这些收集的数据集的分析表明,一个复杂的底层网络基础设施承载着由各种互联网应用程序产生的流量。从Internet路由表中收集的数据用于分析Internet的拓扑结构,并说明Internet的发展是否存在历史趋势。互联网流量数据还用于分类和检测网络异常,如互联网蠕虫等,这些异常会影响路由协议的性能,可能会导致网络性能的严重下降。使用各种统计和机器学习技术对测试数据集进行分类,识别正确的流量异常类型,并设计异常检测机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Your constant companion — Engineering students and their mobile phones Weak convergence of sequences of distorted probabilities Composition and calibration of a custom made omnidirectional camera Calibration system for tactile measuring probes From exoskeleton to the Antal Bejczy center for intelligent robotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1