Deep Reinforcement Learning for Motion Planning in Human Robot cooperative Scenarios

Giorgio Nicola, S. Ghidoni
{"title":"Deep Reinforcement Learning for Motion Planning in Human Robot cooperative Scenarios","authors":"Giorgio Nicola, S. Ghidoni","doi":"10.1109/ETFA45728.2021.9613505","DOIUrl":null,"url":null,"abstract":"In this paper we tackle motion planning in industrial human-robot cooperative scenarios modeled as a reinforcement learning problem solved in a simulated environment. The agent learns the most effective policy to reach the designated target position while avoiding collisions with a human, performing a pick and place task in the robot workspace, and with fixed obstacles. The policy acts as a feedback motion planner (or reactive motion planner), therefore at each time-step it senses the surrounding environment and computes the action to be performed. In this work a novel formulation of the action that guarantees the trajectory derivatives continuity is proposed to create smooth trajectories that are necessary for maximizing the human trust in the robot. The action is defined as the sub-trajectory the agent must follow for the duration of a time-step, therefore the complete trajectory is the concatenation of all the trajectories computed at each time-step. The proposed method does not require to infer the action the human is currently performing and/or foresee the space occupied by the human. Indeed, during the training phase in a simulated environment the agent experience how the human behaves in the specific scenario, therefore it learns the policy that best adapts to the human actions and movements. The proposed method is finally applied in a scenario of human-robot cooperative pick and place.","PeriodicalId":312498,"journal":{"name":"2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA )","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA45728.2021.9613505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we tackle motion planning in industrial human-robot cooperative scenarios modeled as a reinforcement learning problem solved in a simulated environment. The agent learns the most effective policy to reach the designated target position while avoiding collisions with a human, performing a pick and place task in the robot workspace, and with fixed obstacles. The policy acts as a feedback motion planner (or reactive motion planner), therefore at each time-step it senses the surrounding environment and computes the action to be performed. In this work a novel formulation of the action that guarantees the trajectory derivatives continuity is proposed to create smooth trajectories that are necessary for maximizing the human trust in the robot. The action is defined as the sub-trajectory the agent must follow for the duration of a time-step, therefore the complete trajectory is the concatenation of all the trajectories computed at each time-step. The proposed method does not require to infer the action the human is currently performing and/or foresee the space occupied by the human. Indeed, during the training phase in a simulated environment the agent experience how the human behaves in the specific scenario, therefore it learns the policy that best adapts to the human actions and movements. The proposed method is finally applied in a scenario of human-robot cooperative pick and place.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度强化学习的人-机器人协同场景运动规划
在本文中,我们将工业人机协作场景中的运动规划建模为在模拟环境中解决的强化学习问题。代理学习最有效的策略来到达指定的目标位置,同时避免与人碰撞,在机器人工作空间中执行拾取任务,以及固定的障碍物。策略充当反馈运动规划器(或反应运动规划器),因此在每个时间步,它感知周围环境并计算要执行的动作。在这项工作中,提出了一种保证轨迹导数连续性的新动作公式,以创建最大化人类对机器人信任所必需的光滑轨迹。动作被定义为代理在一个时间步长期间必须遵循的子轨迹,因此完整的轨迹是在每个时间步长计算的所有轨迹的串联。所提出的方法不需要推断人类当前正在执行的动作和/或预见人类占用的空间。实际上,在模拟环境中的训练阶段,代理体会到人类在特定场景中的行为,因此它学习最适合人类行为和运动的策略。最后将该方法应用于人机协同拾取场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Optimal Order Assignment Algorithm for Single-Rate Time-Driven AFAP Cyclic Executives Demonstrating Reinforcement Learning for Maintenance Scheduling in a Production Environment Investigation in IoT and 5G architectures for deployment of Artificial Intelligence into urban mobility and production Towards a Robust MMIO-based Synchronized Clock for Virtualized Edge Computing Devices LETRA: Mapping Legacy Ethernet-Based Traffic into TSN Traffic Classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1