Proactive Suggestion Generation: Data and Methods for Stepwise Task Assistance

E. Nouri, Robert Sim, Adam Fourney, Ryen W. White
{"title":"Proactive Suggestion Generation: Data and Methods for Stepwise Task Assistance","authors":"E. Nouri, Robert Sim, Adam Fourney, Ryen W. White","doi":"10.1145/3397271.3401272","DOIUrl":null,"url":null,"abstract":"Conversational systems such as digital assistants can help users per-form many simple tasks upon request. Looking to the future, these systems will also need to fully support more complex, multi-step tasks (e.g., following cooking instructions), and help users complete those tasks, e.g., via useful and relevant suggestions made during the process. This paper takes the first step towards automatic generation of task-related suggestions. We introduce proactive suggestion generation as a novel task of natural language generation, in which a decision is made to inject a suggestion into an ongoing user dialog and one is then automatically generated. We propose two types of stepwise suggestions: multiple-choice response generation and text generation. We provide several models for each type of suggestion, including binary and multi-class classification, and text generation.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Conversational systems such as digital assistants can help users per-form many simple tasks upon request. Looking to the future, these systems will also need to fully support more complex, multi-step tasks (e.g., following cooking instructions), and help users complete those tasks, e.g., via useful and relevant suggestions made during the process. This paper takes the first step towards automatic generation of task-related suggestions. We introduce proactive suggestion generation as a novel task of natural language generation, in which a decision is made to inject a suggestion into an ongoing user dialog and one is then automatically generated. We propose two types of stepwise suggestions: multiple-choice response generation and text generation. We provide several models for each type of suggestion, including binary and multi-class classification, and text generation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
主动建议生成:逐步任务协助的数据和方法
诸如数字助理之类的会话系统可以根据请求帮助用户执行许多简单的任务。展望未来,这些系统还需要完全支持更复杂、多步骤的任务(例如,遵循烹饪指令),并通过在此过程中提出有用和相关的建议来帮助用户完成这些任务。本文向自动生成任务相关建议迈出了第一步。我们将主动建议生成作为自然语言生成的一项新任务引入,在该任务中,决定向正在进行的用户对话中注入建议,然后自动生成建议。我们提出了两种类型的逐步建议:选择题答案生成和文本生成。我们为每种类型的建议提供了几个模型,包括二元分类和多类分类,以及文本生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MHM: Multi-modal Clinical Data based Hierarchical Multi-label Diagnosis Prediction Correlated Features Synthesis and Alignment for Zero-shot Cross-modal Retrieval DVGAN Models Versus Satisfaction: Towards a Better Understanding of Evaluation Metrics Global Context Enhanced Graph Neural Networks for Session-based Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1