Learning obstacle avoidance reflex behavior for autonomous navigation from hand-drawn trajectories

R. Chatterjee, F. Matsuno
{"title":"Learning obstacle avoidance reflex behavior for autonomous navigation from hand-drawn trajectories","authors":"R. Chatterjee, F. Matsuno","doi":"10.1109/ICIT.2000.854097","DOIUrl":null,"url":null,"abstract":"The present work explores a simple off-line method to extract the intuitive actions used by humans to avoid obstacles during motion in unknown environments. The proposed method analyzes the hand drawn trajectories by human individuals on environment maps showing typical obstacle placements, and evaluates the navigational decision parameters. The translation and steering velocity variation along the curve are computed based on the constraints of the mobile entity (e.g., an autonomous mobile robot). The decisions are considered to be taken in the context of the distances of the obstacles around the current point on the trajectory. The instances of environmental situations and corresponding intended actions are used to train a neural network. To reduce the complexity of the network, the number of input variables for the network is reduced by considering only single sided reflex behaviors. The left-right symmetry of the perception-action behaviors allows the single sided reflex network to be used for both left and right hand side reflex in the vicinity of obstacles. Simulation results are presented to show the effectiveness of the proposed strategy in typical obstacle situations.","PeriodicalId":405648,"journal":{"name":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2000.854097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The present work explores a simple off-line method to extract the intuitive actions used by humans to avoid obstacles during motion in unknown environments. The proposed method analyzes the hand drawn trajectories by human individuals on environment maps showing typical obstacle placements, and evaluates the navigational decision parameters. The translation and steering velocity variation along the curve are computed based on the constraints of the mobile entity (e.g., an autonomous mobile robot). The decisions are considered to be taken in the context of the distances of the obstacles around the current point on the trajectory. The instances of environmental situations and corresponding intended actions are used to train a neural network. To reduce the complexity of the network, the number of input variables for the network is reduced by considering only single sided reflex behaviors. The left-right symmetry of the perception-action behaviors allows the single sided reflex network to be used for both left and right hand side reflex in the vicinity of obstacles. Simulation results are presented to show the effectiveness of the proposed strategy in typical obstacle situations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于手绘轨迹的自主导航避障反射行为学习
目前的工作探索了一种简单的离线方法来提取人类在未知环境中运动时避免障碍物的直观动作。该方法分析了人类在具有典型障碍物位置的环境地图上绘制的轨迹,并评估了导航决策参数。基于移动实体(例如自主移动机器人)的约束,计算沿曲线的平移和转向速度变化。决策被认为是在轨迹上当前点周围障碍物距离的背景下做出的。环境情况的实例和相应的预期动作被用来训练神经网络。为了降低网络的复杂性,通过只考虑单侧反射行为来减少网络输入变量的数量。感知-行动行为的左右对称性使得单侧反射网络可以同时用于障碍物附近的左右反射。仿真结果表明了该策略在典型障碍物情况下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of nonlinear nonautonomous state space systems from input-output measurements On stabilizing gains far digital control systems Developing an experimental mobile robot-ROVEL Failure detection/management in launch vehicle avionics Static UPS failures-origin and possible prevention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1