Classification of Synchronized Brainwave Recordings using Machine Learning and Deep Learning Approaches

K. S. Srujan
{"title":"Classification of Synchronized Brainwave Recordings using Machine Learning and Deep Learning Approaches","authors":"K. S. Srujan","doi":"10.1109/IEMCON.2018.8614866","DOIUrl":null,"url":null,"abstract":"It is important to identify and to classify brain signals to diagnose brain diseases. This study uses Synchronized Brainwave Recordings or Electro Encephalography (EEG) signals data available from the University of California, Berkeley, School of Information, to understand features and to classify signals into eight different classes. First, Fast Fourier Transform (FFT) is used for feature extraction and then classifiers like Random Forest, Gradient Boost, Xgboost, Ensemble Voting and Logistic Regression are used to classify the signals. Next, the challenges in classifying using deep learning based approaches like Convolutional Neural Network (CNN) for multi-class classification are discussed.","PeriodicalId":368939,"journal":{"name":"2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMCON.2018.8614866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

It is important to identify and to classify brain signals to diagnose brain diseases. This study uses Synchronized Brainwave Recordings or Electro Encephalography (EEG) signals data available from the University of California, Berkeley, School of Information, to understand features and to classify signals into eight different classes. First, Fast Fourier Transform (FFT) is used for feature extraction and then classifiers like Random Forest, Gradient Boost, Xgboost, Ensemble Voting and Logistic Regression are used to classify the signals. Next, the challenges in classifying using deep learning based approaches like Convolutional Neural Network (CNN) for multi-class classification are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习和深度学习方法对同步脑波记录进行分类
识别和分类脑信号对脑疾病的诊断具有重要意义。这项研究使用同步脑波记录或脑电图(EEG)信号数据,从加州大学伯克利分校信息学院获得,以了解特征并将信号分为八种不同的类别。首先,使用快速傅里叶变换(FFT)进行特征提取,然后使用随机森林、梯度Boost、Xgboost、集成投票和逻辑回归等分类器对信号进行分类。接下来,讨论了使用卷积神经网络(CNN)等基于深度学习的方法进行多类分类所面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Fog Node Model for Multi-purpose Fog Computing Systems Research-Practice Gap in Passive House Standard Propagation Modeling of IoT Devices for Deployment in Multi-level Hilly Urban Environments Architectures and Challenges Towards Software Defined Cloud of Things (SDCoT) Unveiling Topics from Scientific Literature on the Subject of Self-driving Cars using Latent Dirichlet Allocation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1