Iris + Ocular: Generalized Iris Presentation Attack Detection Using Multiple Convolutional Neural Networks

Steven Hoffman, Renu Sharma, A. Ross
{"title":"Iris + Ocular: Generalized Iris Presentation Attack Detection Using Multiple Convolutional Neural Networks","authors":"Steven Hoffman, Renu Sharma, A. Ross","doi":"10.1109/ICB45273.2019.8987261","DOIUrl":null,"url":null,"abstract":"An iris recognition system is vulnerable to presentation attacks, or PAs, where an adversary presents artifacts such as printed eyes, plastic eyes or cosmetic contact lenses to defeat the system. Existing PA detection schemes do not have good generalization capability and often fail in cross-dataset scenarios, where training and testing are performed on vastly different datasets. In this work, we address this problem by fusing the outputs of three Convolutional Neural Network (CNN) based PA detectors, each of which examines different portions of the input image. The first CNN (I-CNN) focuses on the iris region only, the second CNN (F-CNN) uses the entire ocular region and the third CNN (S-CNN) uses a subset of patches sampled from the ocular region. Experiments conducted on two publicly available datasets (LivDetW15 and BERC-IF) and on a proprietary dataset (IrisID) confirm that the use of a bag of CNNs is effective in improving the generalizability of PA detectors.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

An iris recognition system is vulnerable to presentation attacks, or PAs, where an adversary presents artifacts such as printed eyes, plastic eyes or cosmetic contact lenses to defeat the system. Existing PA detection schemes do not have good generalization capability and often fail in cross-dataset scenarios, where training and testing are performed on vastly different datasets. In this work, we address this problem by fusing the outputs of three Convolutional Neural Network (CNN) based PA detectors, each of which examines different portions of the input image. The first CNN (I-CNN) focuses on the iris region only, the second CNN (F-CNN) uses the entire ocular region and the third CNN (S-CNN) uses a subset of patches sampled from the ocular region. Experiments conducted on two publicly available datasets (LivDetW15 and BERC-IF) and on a proprietary dataset (IrisID) confirm that the use of a bag of CNNs is effective in improving the generalizability of PA detectors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
虹膜+眼部:基于多重卷积神经网络的广义虹膜呈现攻击检测
虹膜识别系统很容易受到展示攻击(pa)的攻击,攻击者会展示打印的眼睛、塑料眼睛或化妆品隐形眼镜等人工制品来击败该系统。现有的PA检测方案没有很好的泛化能力,并且经常在跨数据集场景中失败,在这些场景中,训练和测试是在非常不同的数据集上进行的。在这项工作中,我们通过融合三个基于卷积神经网络(CNN)的PA检测器的输出来解决这个问题,每个检测器检查输入图像的不同部分。第一个CNN (I-CNN)只关注虹膜区域,第二个CNN (F-CNN)使用整个眼部区域,第三个CNN (S-CNN)使用从眼部区域采样的斑块子集。在两个公开可用的数据集(LivDetW15和BERC-IF)和一个专有数据集(IrisID)上进行的实验证实,使用一袋cnn在提高PA检测器的泛化性方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PPG2Live: Using dual PPG for active authentication and liveness detection A New Approach for EEG-Based Biometric Authentication Using Auditory Stimulation A novel scheme to address the fusion uncertainty in multi-modal continuous authentication schemes on mobile devices Sclera Segmentation Benchmarking Competition in Cross-resolution Environment Fingerprint Presentation Attack Detection utilizing Time-Series, Color Fingerprint Captures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1