Pengyu Zhang, Pan Hu, Vijay Pasikanti, Deepak Ganesan
{"title":"EkhoNet: high speed ultra low-power backscatter for next generation sensors","authors":"Pengyu Zhang, Pan Hu, Vijay Pasikanti, Deepak Ganesan","doi":"10.1145/2639108.2639138","DOIUrl":null,"url":null,"abstract":"This paper argues for a clean-slate redesign of wireless sensor systems to take advantage of the extremely low power consumption of backscatter communication and emerging ultra-low power sensor modalities. We make the case that existing sensing architectures incur substantial overhead for a variety of computational blocks between the sensor and RF front end - while these overheads were negligible on platforms where communication was expensive, they become the bottleneck on backscatter-based systems and increase power consumption while limiting throughput. We present a radically new design that is minimalist, yet efficient, and designed to operate end-to-end at tens of μWs while enabling high-data rate backscatter at rates upwards of many hundreds of Kbps. In addition, we demonstrate a complex reader-driven MAC layer that jointly considers energy, channel conditions, data utility, and platform constraints to enable network-wide throughput optimizations. We instantiate this architecture on a custom FPGA-based platform connected to microphones, and show that the platform consumes 73x lower power and has 12.5x higher throughput than existing backscatter-based sensing platforms.","PeriodicalId":331897,"journal":{"name":"Proceedings of the 20th annual international conference on Mobile computing and networking","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th annual international conference on Mobile computing and networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2639108.2639138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45
Abstract
This paper argues for a clean-slate redesign of wireless sensor systems to take advantage of the extremely low power consumption of backscatter communication and emerging ultra-low power sensor modalities. We make the case that existing sensing architectures incur substantial overhead for a variety of computational blocks between the sensor and RF front end - while these overheads were negligible on platforms where communication was expensive, they become the bottleneck on backscatter-based systems and increase power consumption while limiting throughput. We present a radically new design that is minimalist, yet efficient, and designed to operate end-to-end at tens of μWs while enabling high-data rate backscatter at rates upwards of many hundreds of Kbps. In addition, we demonstrate a complex reader-driven MAC layer that jointly considers energy, channel conditions, data utility, and platform constraints to enable network-wide throughput optimizations. We instantiate this architecture on a custom FPGA-based platform connected to microphones, and show that the platform consumes 73x lower power and has 12.5x higher throughput than existing backscatter-based sensing platforms.