{"title":"A Study on Role of Machine Learning in Detectin Heart Diseas.","authors":"P. Kaur","doi":"10.1109/ICCMC48092.2020.ICCMC-00037","DOIUrl":null,"url":null,"abstract":"A fist size muscle occupies an important in the human body by supplying oxygen to all the body organs. According to study of demography from WHO (World Health organization), the main cause of increasing death rate is due to the cardiac failure of human being. The main challenge for data analysis is to predict and prevent the heart disease. Machine learning has been developed to perform impressive predictions and make appropriate decision from abundant data originated by healthcare centres. In this paper numerous machine learning techniques are surveyed by using the knowledge collected from preprocessing data (clinical knowledge), which comprises many medical features to perform heart disease detection. The comparative study states that the prediction of heart disease has been improved by combining various machine learning algorithms to perform early disease investigation in a cost effective manner. The proposed research work primarily focuses on preparing a review of the research done by different professionals and compiling it into one paper and creating a direction for future research in this domain. In this paper many techniques are surveyed where best predictions are performed for heart disease.","PeriodicalId":130581,"journal":{"name":"2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC48092.2020.ICCMC-00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A fist size muscle occupies an important in the human body by supplying oxygen to all the body organs. According to study of demography from WHO (World Health organization), the main cause of increasing death rate is due to the cardiac failure of human being. The main challenge for data analysis is to predict and prevent the heart disease. Machine learning has been developed to perform impressive predictions and make appropriate decision from abundant data originated by healthcare centres. In this paper numerous machine learning techniques are surveyed by using the knowledge collected from preprocessing data (clinical knowledge), which comprises many medical features to perform heart disease detection. The comparative study states that the prediction of heart disease has been improved by combining various machine learning algorithms to perform early disease investigation in a cost effective manner. The proposed research work primarily focuses on preparing a review of the research done by different professionals and compiling it into one paper and creating a direction for future research in this domain. In this paper many techniques are surveyed where best predictions are performed for heart disease.