RBF Control Research Based on Fuzzy Neural Model

Changlu Zheng, Jian Fan, M. Fei, Zhinian Gao
{"title":"RBF Control Research Based on Fuzzy Neural Model","authors":"Changlu Zheng, Jian Fan, M. Fei, Zhinian Gao","doi":"10.1109/CISE.2009.5363752","DOIUrl":null,"url":null,"abstract":"RBF controller based on fuzzy neural network model is given in this paper, which applies field data to model the control object, and then uses the model to adjust the parameters of gauss basis function in RBF controller, such as the central value, the width, and the weights from hidden layer to output layer. In addition, the controller is applied to control the bed temperature of CFB boilers. By comparison with the traditional PID controllers, the simulation result shows that the given controller has shorter response time and better tracking performance.","PeriodicalId":135441,"journal":{"name":"2009 International Conference on Computational Intelligence and Software Engineering","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Computational Intelligence and Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISE.2009.5363752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

RBF controller based on fuzzy neural network model is given in this paper, which applies field data to model the control object, and then uses the model to adjust the parameters of gauss basis function in RBF controller, such as the central value, the width, and the weights from hidden layer to output layer. In addition, the controller is applied to control the bed temperature of CFB boilers. By comparison with the traditional PID controllers, the simulation result shows that the given controller has shorter response time and better tracking performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊神经模型的RBF控制研究
本文提出了一种基于模糊神经网络模型的RBF控制器,该控制器利用现场数据对控制对象进行建模,然后利用该模型对RBF控制器中的高斯基函数的中心值、宽度、隐层到输出层的权值等参数进行调整。此外,还将该控制器应用于循环流化床锅炉床层温度的控制。通过与传统PID控制器的比较,仿真结果表明该控制器具有更短的响应时间和更好的跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Subspace Affine Pseudoframes with a Generalized Multiresolution Structure and the Pyramid Decomposition Scheme Research of the Knowledge Reasoning Based on Extensional Description Logics ALC-Plus Energy-Saving Analysis for a 600MW Coal-Fired Supercritical Power Plant A Case Study on Tailoring Software Process for Characteristics Based on RUP Research on STEP-NC Based Machining and On-Machine Inspecting Simulation System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1