Content-Aware Convolutional Neural Network for Object Recognition Task

A. Poernomo, Dae-Ki Kang
{"title":"Content-Aware Convolutional Neural Network for Object Recognition Task","authors":"A. Poernomo, Dae-Ki Kang","doi":"10.7236/IJASC.2016.5.3.1","DOIUrl":null,"url":null,"abstract":"In existing Convolutional Neural Network (CNNs) for object recognition task, there are only few efforts known to reduce the noises from the images. Both convolution and pooling layers perform the features extraction without considering the noises of the input image, treating all pixels equally important. In computer vision field, there has been a study to weight a pixel importance. Seam carving resizes an image by sacrificing the least important pixels, leaving only the most important ones. We propose a new way to combine seam carving approach with current existing CNN model for object recognition task. We attempt to remove the noises or the “unimportant” pixels in the image before doing convolution and pooling, in order to get better feature representatives. Our model shows promising result with CIFAR-10 dataset.","PeriodicalId":297506,"journal":{"name":"The International Journal of Advanced Smart Convergence","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Advanced Smart Convergence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7236/IJASC.2016.5.3.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In existing Convolutional Neural Network (CNNs) for object recognition task, there are only few efforts known to reduce the noises from the images. Both convolution and pooling layers perform the features extraction without considering the noises of the input image, treating all pixels equally important. In computer vision field, there has been a study to weight a pixel importance. Seam carving resizes an image by sacrificing the least important pixels, leaving only the most important ones. We propose a new way to combine seam carving approach with current existing CNN model for object recognition task. We attempt to remove the noises or the “unimportant” pixels in the image before doing convolution and pooling, in order to get better feature representatives. Our model shows promising result with CIFAR-10 dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向对象识别任务的内容感知卷积神经网络
在现有的用于物体识别的卷积神经网络(cnn)中,对图像中的噪声进行降噪的研究很少。卷积层和池化层都在不考虑输入图像噪声的情况下进行特征提取,对所有像素都同等重要。在计算机视觉领域,对像素重要性进行了加权研究。接缝雕刻通过牺牲最不重要的像素来调整图像的大小,只留下最重要的像素。提出了一种将接缝雕刻方法与现有的CNN模型相结合的目标识别方法。在进行卷积和池化之前,我们试图去除图像中的噪声或“不重要”像素,以获得更好的特征表示。我们的模型在CIFAR-10数据集上显示了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design for Automation System for Pharmaceutical Prescription Using Arduino and Optical Character Recognition A Study on the Contents Security Management Model for Multi-platform Users A Study on the meaning of work and job embeddedness affecting the creative behavior of organization members The Structural Relationship among Selection Attributes, Consumption Value Brand Attitude, Fun, Brand Loyalty and Quality of Life in Athleisure Improved BP-NN Controller of PMSM for Speed Regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1