Neighborhood structures for genetic local search algorithms

T. Murata, H. Ishibuchi, M. Gen
{"title":"Neighborhood structures for genetic local search algorithms","authors":"T. Murata, H. Ishibuchi, M. Gen","doi":"10.1109/KES.1998.725920","DOIUrl":null,"url":null,"abstract":"We examine the performance of a genetic local search (GLS) algorithm for flowshop scheduling problems. The GLS is a hybrid algorithm of a local search and a genetic algorithm. We have already modified the local search procedure in order to improve the performance of the GLS. In the modified local search procedure, all the neighborhood solutions are not examined. The performance of the GLS is not sensitive to the choice of parameter values such as the crossover probability and the mutation probability. That is the main advantage of the GLS. In this paper, we examine the relation between a mutation operator and a local search procedure. By computer simulations on flowshop scheduling problems, we find that a shift change is appropriate for the local search procedure in the GLS.","PeriodicalId":394492,"journal":{"name":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KES.1998.725920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We examine the performance of a genetic local search (GLS) algorithm for flowshop scheduling problems. The GLS is a hybrid algorithm of a local search and a genetic algorithm. We have already modified the local search procedure in order to improve the performance of the GLS. In the modified local search procedure, all the neighborhood solutions are not examined. The performance of the GLS is not sensitive to the choice of parameter values such as the crossover probability and the mutation probability. That is the main advantage of the GLS. In this paper, we examine the relation between a mutation operator and a local search procedure. By computer simulations on flowshop scheduling problems, we find that a shift change is appropriate for the local search procedure in the GLS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
遗传局部搜索算法的邻域结构
我们研究了遗传局部搜索(GLS)算法在流水车间调度问题上的性能。该算法是一种局部搜索和遗传算法的混合算法。为了提高GLS的性能,我们已经对局部搜索过程进行了修改。在改进的局部搜索过程中,不检查所有邻域解。GLS的性能对交叉概率和突变概率等参数值的选择不敏感。这是GLS的主要优势。本文研究了变异算子与局部搜索过程之间的关系。通过对流水车间调度问题的计算机仿真,我们发现,在全局优化系统中,局部搜索过程采用换班方式是合适的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An analog VLSI which emulates biological vision Transient signal analysis and classification for condition monitoring of power switching equipment using wavelet transform and artificial neural networks A research concerning a concept generation and an action of an agent Insect vision based motion detection Chaos signal generator by IIR digital filters including nonlinear functions and its application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1