UAV-assisted Uplink NOMA Networks: UAV Placement and Resource Block Allocation

Jihao Cai, Guoxin Li
{"title":"UAV-assisted Uplink NOMA Networks: UAV Placement and Resource Block Allocation","authors":"Jihao Cai, Guoxin Li","doi":"10.1109/ICUS55513.2022.9987037","DOIUrl":null,"url":null,"abstract":"This paper studies an uplink network in which a hovering unmanned aerial vehicle (UAV) serves as a flying base station and multiple ground users access different resource blocks (RBs) with the aid of power-domain non-orthogonal multiple access (NOMA). We aim to maximize the sum of information rate of the network through appropriate UAV placement and RB allocation. The mixed integer nonconvex problem is decomposed into two layers. The inner layer, RB allocation given the position of the UAV, is solved by hill-climbing. The outer layer, UAV placement given the result of RB allocation of the inner layer, is solved by particle swarm optimization. Simulation results show that the proposed layered scheme outperforms existing resource allocation strategies.","PeriodicalId":345773,"journal":{"name":"2022 IEEE International Conference on Unmanned Systems (ICUS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Unmanned Systems (ICUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUS55513.2022.9987037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies an uplink network in which a hovering unmanned aerial vehicle (UAV) serves as a flying base station and multiple ground users access different resource blocks (RBs) with the aid of power-domain non-orthogonal multiple access (NOMA). We aim to maximize the sum of information rate of the network through appropriate UAV placement and RB allocation. The mixed integer nonconvex problem is decomposed into two layers. The inner layer, RB allocation given the position of the UAV, is solved by hill-climbing. The outer layer, UAV placement given the result of RB allocation of the inner layer, is solved by particle swarm optimization. Simulation results show that the proposed layered scheme outperforms existing resource allocation strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无人机辅助上行NOMA网络:无人机布局和资源块分配
研究了一种以悬停无人机(UAV)为飞行基站,多个地面用户借助功率域非正交多址(NOMA)访问不同资源块的上行网络。我们的目标是通过适当的无人机布局和RB分配来最大化网络的信息率总和。将混合整数非凸问题分解为两层。内层,即给定无人机位置的RB分配,通过爬坡求解。根据内层的RB分配结果,采用粒子群算法求解外层的无人机布局问题。仿真结果表明,该分层方案优于现有的资源分配策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UNF-SLAM: Unsupervised Feature Extraction Network for Visual-Laser Fusion SLAM Automatic Spinal Ultrasound Image Segmentation and Deployment for Real-time Spine Volumetric Reconstruction Track Matching Method of Sea Surface Targets Based on Improved Longest Common Subsequence Algorithm A dynamic event-triggered leader-following consensus algorithm for multi-AUVs system Adaptive Multi-feature Fusion Improved ECO-HC Image Tracking Algorithm Based on Confidence Judgement for UAV Reconnaissance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1