Fast secure matrix multiplications over ring-based homomorphic encryption

P. Mishra, Deevashwer Rathee, D. Duong, Masaya Yasuda
{"title":"Fast secure matrix multiplications over ring-based homomorphic encryption","authors":"P. Mishra, Deevashwer Rathee, D. Duong, Masaya Yasuda","doi":"10.1080/19393555.2020.1836288","DOIUrl":null,"url":null,"abstract":"ABSTRACT As widespread development of biometrics, concerns about security and privacy are rapidly increasing. Secure matrix computation is one of the most fundamental and useful operations for statistical analysis and machine learning with protecting the confidentiality of input data. Secure computation can be achieved by homomorphic encryption, supporting meaningful operations over encrypted data. HElib is a software library that implements the Brakerski-Gentry-Vaikuntanathan (BGV) homomorphic scheme, in which secure matrix-vector multiplication is proposed for operating matrices. Recently, Duong et al. (Tatra Mt. Publ) proposed a new method for secure single matrix multiplication over a ring-LWE-based scheme. In this paper, we generalize Duong et al.’s method for secure multiple matrix multiplications over the BGV scheme. We also implement our method using HElib, and show that our method is much faster than the matrix-vector multiplication in HElib for secure matrix multiplications.","PeriodicalId":103842,"journal":{"name":"Information Security Journal: A Global Perspective","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Security Journal: A Global Perspective","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19393555.2020.1836288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

ABSTRACT As widespread development of biometrics, concerns about security and privacy are rapidly increasing. Secure matrix computation is one of the most fundamental and useful operations for statistical analysis and machine learning with protecting the confidentiality of input data. Secure computation can be achieved by homomorphic encryption, supporting meaningful operations over encrypted data. HElib is a software library that implements the Brakerski-Gentry-Vaikuntanathan (BGV) homomorphic scheme, in which secure matrix-vector multiplication is proposed for operating matrices. Recently, Duong et al. (Tatra Mt. Publ) proposed a new method for secure single matrix multiplication over a ring-LWE-based scheme. In this paper, we generalize Duong et al.’s method for secure multiple matrix multiplications over the BGV scheme. We also implement our method using HElib, and show that our method is much faster than the matrix-vector multiplication in HElib for secure matrix multiplications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于环同态加密的快速安全矩阵乘法
随着生物识别技术的广泛发展,人们对安全性和隐私性的担忧也在迅速增加。安全矩阵计算是统计分析和机器学习中最基本和最有用的运算之一,它可以保护输入数据的机密性。安全计算可以通过同态加密实现,支持对加密数据进行有意义的操作。HElib是一个实现Brakerski-Gentry-Vaikuntanathan (BGV)同态方案的软件库,其中对矩阵的运算提出了安全的矩阵-向量乘法。最近,Duong等人(Tatra Mt. Publ)提出了一种基于环lwe方案的安全单矩阵乘法新方法。本文推广了Duong等人在BGV方案上的安全多重矩阵乘法方法。我们还使用HElib实现了我们的方法,并表明我们的方法在安全矩阵乘法方面比HElib中的矩阵向量乘法快得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
“The pull to do nothing would be strong”: limitations & opportunities in reporting insider threats Prevention of DDoS attacks: a comprehensive review and future directions Towards improving the security of wireless networks using secured session keys Evaluating the status of information security management in faculty libraries: a case study of Allameh Tabatabai University Privacy preservation of inventory management using adaptive key generation with Hyperledger blockchain technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1