A Computational Workflow for Estimation of Short RNA Polyadenylation using Direct RNA Nanopore Sequencing with Polyuridylation

Jirachote Karunyakorn, Naruemon Pratanwanich, M. Pongpanich, Pornchai Kaewsapsak
{"title":"A Computational Workflow for Estimation of Short RNA Polyadenylation using Direct RNA Nanopore Sequencing with Polyuridylation","authors":"Jirachote Karunyakorn, Naruemon Pratanwanich, M. Pongpanich, Pornchai Kaewsapsak","doi":"10.1109/jcsse54890.2022.9836262","DOIUrl":null,"url":null,"abstract":"Polyadenylation or poly(A) tail at the 3’-end of RNA is a type of post-transcriptional modification that regulates RNA biological functions and stability. While poly(A) tails in eukaryotes are 80–200 nucleotides long and generally stabilize the RNAs, the poly(A) tails in prokaryotes are significantly shorter and usually destabilize the RNAs. Although Oxford Nanopore Technologies (ONT) direct RNA sequencing provides long-read sequencing that allows poly(A) tail length estimation in recent years, the standard nanopore RNA library preparation, which requires sequencing oligo(dT) adapter ligation, could not capture short poly(A) tail RNAs, especially RNAs in prokaryotes. Hence, we introduced in vitro uridylation and developed a computational processing workflow to dissect poly(A) tails and estimate their length. Using synthetic RNAs as standard, this study provides the workflow for short poly(A) tail length estimation by reassigning underestimated poly(A) tail length using base-called sequencing data and re-segmenting misassigned poly(A) tail. This workflow could be beneficial to obtain poly(A) tail length in different organisms and potentially provide insights into their gene expression, regulation, and modification.","PeriodicalId":284735,"journal":{"name":"2022 19th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/jcsse54890.2022.9836262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Polyadenylation or poly(A) tail at the 3’-end of RNA is a type of post-transcriptional modification that regulates RNA biological functions and stability. While poly(A) tails in eukaryotes are 80–200 nucleotides long and generally stabilize the RNAs, the poly(A) tails in prokaryotes are significantly shorter and usually destabilize the RNAs. Although Oxford Nanopore Technologies (ONT) direct RNA sequencing provides long-read sequencing that allows poly(A) tail length estimation in recent years, the standard nanopore RNA library preparation, which requires sequencing oligo(dT) adapter ligation, could not capture short poly(A) tail RNAs, especially RNAs in prokaryotes. Hence, we introduced in vitro uridylation and developed a computational processing workflow to dissect poly(A) tails and estimate their length. Using synthetic RNAs as standard, this study provides the workflow for short poly(A) tail length estimation by reassigning underestimated poly(A) tail length using base-called sequencing data and re-segmenting misassigned poly(A) tail. This workflow could be beneficial to obtain poly(A) tail length in different organisms and potentially provide insights into their gene expression, regulation, and modification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用直接RNA纳米孔测序与多尿苷化估算短RNA聚腺苷化的计算工作流程
RNA 3 '端的聚腺苷化或聚(A)尾是一种调节RNA生物学功能和稳定性的转录后修饰。真核生物中的聚(A)尾部长80-200个核苷酸,通常能稳定rna,而原核生物中的聚(A)尾部明显较短,通常会破坏rna的稳定。虽然近年来牛津纳米孔技术公司(ONT)的直接RNA测序提供了长读测序,可以估计poly(A)尾部长度,但标准的纳米孔RNA文库制备需要测序寡核苷酸(dT)适配器连接,不能捕获短的poly(A)尾部RNA,特别是原核生物中的RNA。因此,我们引入体外尿苷化,并开发了一个计算处理工作流来解剖聚(a)尾部并估计其长度。本研究以合成rna为标准,通过使用碱基测序数据重新分配低估的poly(A)尾部长度和重新分割分配错误的poly(A)尾部,提供了短poly(A)尾部长度估计的工作流程。这种工作流程可能有利于在不同的生物中获得聚(A)尾长度,并可能提供对其基因表达、调控和修饰的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transforming YAWL Workflows with Time Interval Constraints into Timed Automata Automatic Music Transcription for the Thai Xylophone played with Soft Mallets Elastic Fusion Dual-stage Spectrum Sensing for Random PU Accessing A Hybrid Recommender System for Improving Rating Prediction of Movie Recommendation AiRadar: A Sensing Platform for Indoor Air Quality Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1